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1 Introduction

The problem is that we tend to live among the set of puny inegad generally ignore the
vast infinitude of larger ones. How trite and limiting ourwie

— P.D. Schumer

It seems that most children at some age get interested i targbers. “What comes after a thousand?
After a million? After a billion?”, et cetera, are common gtiens.

Obviously there is no limit; whatever number you name, adaane can be obtained simply by adding
one. But what is interesting is just how large a number carxpeessed in a fairly compact way.

Using the standard arithmetic operations (addition, sudtitvn, multiplication, division and exponentia-
tion), what is the largest number you can make using threesaf the digit ‘9"?

It's pretty clear we should just stick to exponents, and gitleat, here are some possibilitie®9, 997,
9%, and9®’.

Already we need to be a little careful with the final org®’. Does this mean(9°)? or 9°)? Since
(99) = 98! this interpretation would gain us very little. If this werteetstandard definition, then why
not writea®” asa’°? Because of this, a tower of exponents is always interpetdming evaluated from

c c Cd Cd
right to left. In other wordsg?” = a®), a** = a®“"), et cetera.

With this definition of towers of exponents, it is clear tigét is the best we can do. If expanded com-
pletely, it would have more thast9, 000, 000 decimal places.

It's a different story with three copies of the digithowever. The numbe?? is the best you can do.

It's fairly clear that stacking exponents makes huge nusbery rapidly, and you might at first think
that if you've got 100 symbols, your best bet would be to stHilk 9s in a tower of exponents and that
would pretty much beat all the other possibilities. Whilestivould be a pretty large number, with a little
cleverness you can dar better.

2 Factorials and Their Relatives

The factorial functionp! =n x (n — 1) x ---3 x 2 x 1 is known to generate very large numbers, but if
we’re counting symbols in our description of large numbesscan probably do better with 9's than with

the factorial. With no limit on factorials, for example, tieds of course no limit to the size of a number
we could generate with just three 9's, since we could have:

9991, (99911, (999D, . ...

(The parenthesis are required above, since usually theletbidctorial symbol means something else:
8l=8x6x4x2and9!! =9 x7x5x3x1,etcetera.)

There is also a hyper-factorl(n) function that generates even larger numbers:

H(n)=1'"x2*x33x - xn"



Finally, Pickover has defined a superfactorial functioh, defined as follows:
n$ = ni"" ,
N——

n! copies

and ever8$ has an enormous number of digits.

3 Names of Large Numbers

How are large numbers named? There’s some disagreemeret iEntjlish language about how to name
them. There are two systems, one used by Americans and teelthihe English. Most of the rest of
the world uses a system similar to the English one. In a séims&nglish system is a bit more logical in
that the prefixes “Bi”, “Tri", “Quad”, et cetera stand for twthree, and four groups of six zeroes. In the
American system, “Bi”, “Tri” and “Quad” stand for three, fgand five groups of three zeroes.

Here are the first few names in both systems:
Number| Scientific| American | English

Notation | Name Name
1,000 103 Thousand | Thousand
1,000, 000 109 Million Million
1,000, 000, 000 109 Billion Thousand Million
1,000,000,000,000 |  10'2 | Trillion Billion

1,000, 000, 000, 000, 000 1015 Quadrillion | Thousand Billion
1,000, 000, 000, 000,000,000 |  10'® | Quintillion | Trillion

In the English system, sometimes the names “Milliard”, [iBid”, “Trilliard”, “Quadrilliard”, et cetera,
are used in place of “Thousand Million”, “Thousand Billigrét cetera.

The names continue in the same general way, and after Qioimtithey are: Sextillion (02%), Septil-
lion (1024), Octillion (1027), Nonillion (103%), Decillion (1023), Undecillion (L03¢), Duodecillion (03°),
Tredecillion (0*2), Quattuordecillion {0%%), Quindecillion (0%8), Sexdecillion {0°!), Septendecillion
(10%%), Octodecillion (0°7), Novemdecillion {0°°), Vigintillion (10%3), Unvigintillion (10%°), Dovigin-
tillion (105%), Trevigintillion (1072), Quattuorvigintillion (107°), Quinvigintillion (107®), Sexvigintillion
(1081), Septenvigintillion (08*), Octovigintillion (1037), Novemvigintillion (10°°), Trigintillion (10°3).
The numbers in parentheses above correspond to the Amerarars. To obtain the English values,
subtract3 from each exponent and then double it.

The name Decillion is sometimes used to indici#? in the American system arid)%°° in the English
system. The name Googol standsfot’®°—al followed by a hundred zeroes—and the name Googolplex
means the numbédrfollowed by a Googol zeroes.

4 Scientific Names

You've probably heard of prefixes like “centi” meaning “huadth” and “mega” meaning “million”. So
“centimeter” is one hundredth of a meter and “megavolt” isiion volts. There is an Sl-approved set
of prefixes for measurements for a large number of sizes. ider¢able:



Multiplier | Prefix | Multiplier | Prefix |

10! deca | 107! deci
102 hecto | 1072 centi
103 kilo 1073 milli
10° mega | 10~° micro
10° giga | 107° nano
1012 tera | 10712 pico
101 peta | 107 femto
1018 exa 10~ 18 atto
102! zetta | 1021 zepto
1074 yotta | 10—2% yocto

So in20 grams of hydrogen gas, there are about 10 mold$.0folecules, oil0 x 6.02323 = 6.023 x
10%* = 6.023 yotta molecules.

5 A Really Big Number

This is the firsteally big number | ever saw. It was shown to me by Leo Moser while Iiwdmgh school.

First, we begin by saying what we meanﬁi (which we will pronounce as “triangle®). It will simply
be defined as™: A
=n".

Thus,@ =22 =4, and& = 3% = 27, et cetera.

Next, we'll define “square:”: [n], to be the numben surrounded by: triangles. Thug,2 | = =
/N = 44 = 256.

In a similar way, we’ll define “pentagon?®: @ to be the numben surrounded by: squares. Thus,

@ = = |256|. So how big is “squar@s6”? Well, it is the numbeR256 surrounded by56

triangles. To get rid of the innermost triangle, we obt2862°¢, a number with616 digits, surrounded
by 255 triangles. Raising thi§16-digit number to its own power will leave us with “onl\254 triangles,
et cetera. It is fairly obvious that this number is almostuaginably large. The number “pentagon-2” is
sometimes called just “mega”, and “pentagon-10" is somesicalled “megistron”.

In the same way, we can define “hexagoh-heptagon«”, and so on.

But at this point | become bored with my notation so I'll intitece an easier one. Define “2-sub-1",
“2-sub-2”, et cetera, as:

21:A

2, =
2; = (2)
2, = (2)
and so on. The number | araally interested in is:

2@,
or in other words, “2-sub-pentagon-2".

As professor Moser said, “Of course now that I've shown yds tine, you can show me a larger one,
but this is probably the largest number you have ever semmd’he was certainly right for that particular
group of high-school students. This huge number is somstgaked the Moser number.



6 Ackermann’s Function

Note: If you are a teacher presenting this to younger studentsnyayi find the pedagogical notes in
Section 13 useful.

Let's consider an innocent-looking function which is simpb describe, but which will increase at an
unbelievable rate. It is a very famous rapidly-increasimgction introduced by Ackermann to settle a
problem in logic. He wanted to show that there exist “generalirsive” functions that are not “primitive

recursive”. We don’t worry about the definitions of “prinviéi recursive” or “general recursive”, but his
proof consisted of the presentation of a general recursinetion (Ackermann’s function) that he could
show to increase more rapidly than any primitive recursiwecfion.

The function we wish to calculate is called Ackermann'’s fiowt, and it is defined as follows:

n+1 : ifm=0

A(m,n) = Am—-1,1) : ifm>0n=0 1)
Am -1, Alm,n—1)) : ifm>0,n>0

The easiest way to understand it is to make a table of the vatid (m, n) beginning with the easy

ones. In the table below, increases to the right, and the rows correspondte 0,1,2,3,.... The “*'s

indicate values we have not yet determined. The first rowreshe= 0, is easy. The general formula is

obviouslyA(0,n) =n + 1.

m

_—

n

2 3 4 5 6 8 9 10
3 4 5 6 7 9

7
8 10 11

* * * xR O

1
2
*
*
*
*

~AWONPEFRO
* % % ok
* % % ok
* % * ok
* % % o
* % % ok
* % % ok
* % % ok
* % % o
* % % % O

The next row wheren = 1 is a bit trickier. Ifn = 0 we can use the second line in formula 1 that defines
Ackermann’s function to obtaind(1,0) = A(0,1) =

What is A(1,1)? We must apply the third row in formula 1 to obtair(1,1) = A(0, A(1,0)) =
A(0,2) = 3. Similarly: A(1,2) = A(0,A(1,1)) = A(0,3) = 4. Make sure you understand what is
going on by working out a few more, and finally we can fill out #ezond row of the table as follows.

m\n|0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 12 3 45 6 7 8 9 10 11 12
2 * * * * * * * * * * *
3 * * * * * * * * * * *
4 * * * * * * * * * * *
The general formula for this row id(1,n) = n + 2.
The third row can be approached in the same way:
A(2,0) = A(1,1)=3
A2,1) = A(1,A(2,0) = A(1,3) =5
A2,2) = A1, A(2,1) = A(1,5) =7
A2,3) = A(1,A(2,2) = A1, 7) =9

We can continue (do so for a few more) to obtain the third row:

m\wn|O0O 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 11
3 45 6 7 8 9 10 11 12
5 7 9
*
*

11 13 15 17 19 21 23

* * * * * * * * *

A WN P

* * * * * * * * *

A WNPEFLO



The general formula for this row i4(2,n) = 2n + 3.
Repeat the process fai(3, n):

A(3,0) = A(2,1)=5

A(3,1) = A(2,A(3,0)) = A(2,5) =13

A(3,2) = A(2,A(3,1)) = A(2,13) =29

A(3,3) = A(2,A(3,2)) = A(2,29) = 61

If you do a few more, you will see that the table now looks likist
m\n|O0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 3 5 7 9 11 13 15 17 19 21 23
3 5 13 29 61 125 253 509 1021 2045 4093 8189
4 * * * * * * * * * * *

The general formula for this row ig(3,n) = 2"+3 — 3.
Beginning with the next line, things begin to get ugly:

A4,0) = A(B3,1)=13=22_3

A1) = ABAM) = A(3,13) = 63533 = 2° —3

A(4,2) = A(3,A(4,1)) = A(3,65533) = 205536 _ 3 — 22222 s
A(4,3) = A(3,A(4,2)) = A(3,205%36 _3) = Q2055 _ o _ 222222 ;

The general form for (4, n) is this: A(4,0) = 22° —3, A(4,1) = 92% _ 3, and in general, each time we
increase the value of, the height of the tower of exponents of 2 increases by 1. iflerote byl'(n) the
value of a tower of exponents of heightwhere all the exponents a2ethenA(4,n) = T'(n + 3) — 3:

m\n 0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
2 3 5 7 9 11 13 15 17 19
3 5 13 29 61 125 253 509 1021 2045
2
22 22° 2222 22222 22222
4 29 -3 2 -3 2 -3 2 -3 2 -3

If you've worked a bunch of these examples by hand, you cathgegeneral pattern. The first number in
each row is the second number in the row above it. Each sueeessmber in a row is found by looking
at the previous number and going that many steps ahead inwhabove.

The fifth row thus begins witkl (5, 0) = 65533. The second numbe#,(5, 1) requires that you evaluate a
tower of exponents of 2 having heighii536, et cetera. We can convert this fantastically rapidly grayi
function of two variables into a single-variable functianfallows: A(n) = A(n,n).

7 An Alternative Notation

If we examine the rows in the tables of values of Ackermanmgfion, we can see a pattern of growth.
For Ackermann’s function, the rows always seem to inv@\enultiplication by2, powers of2, towers
of powers of2, et cetera). The other annoying thing about this functianthe extra “3” values that
appear in the equations.

Ackermann’s function is interesting for historical reaspout if we're simply interested in large numbers,
there’s a cleaner and more general way to represent thiofypenber. We'll do it as follows, following
Knuth and Conway:



nm = n+n+---+n (mcopiesof n)

ntm = nnan---n=n" (m copies of n)
nftTm = ninln---nTn (mcopiesof n)
nTtTm = nfinlTn---nlln (mcopiesof n)

ni1ttm = nifniiTn---niitn (mcopiesof n)

As was the case with exponents, we will evaluate the exmnessibove from right to left. The first two
lines are fairly straight-forward, but let's look at someeyples from the third row:

3113 = 31313=23 =327 = 7625597484987

2

2114 = 27212712=22 =216 =65536
It's fairly clear that this third row corresponds to towef&gponents, but with the andm, we can easily
specify towers of any number to any height.
The fourth row also behaves much like the Ackermann function

37113 = 3713173=3711 7625597484987

which is an exponent tower 86 of height7625597484987. Let’s just call this giant numbex.
It is difficult even to think about the next row:

311118 = 311131118=3111X

This will consist of a list ofX 3s with two up-arrows between each pair. This huge nuntbéf, 11 3,
comes up again in Section 9.2.

Using the up-arrow notation above, the Ackermann numbtrs) are something likd 7 1,2 17 2,
37113,4 1711 4, and so on.

8 Still Larger Numbers

The notation above represents a number using two other mgmhes certain number of up-arrows be-
tween them. We might as well represent the number of arrolasasnber as well.

The following notation, following Conway and Guy, does jtsit. Let:

a—b—c
represent the numbeifollowed byc up-arrows followed by. Thus3 — 4 — 5isthe same a3 1711 4.
Using this notation, the Ackermann numbers (as describdtkeiprevious section) look like — n — n.

What we would like to do is describe what is meant by a chaimes$e right-pointing arrows. If there is
just one (as im — m) this will meann™. The situation with two is described above, and if there are
more than two, here is the meaning:

To evaluate
a—b—oc—--—r—-y—z+1 (2)

check the value of, If z = 0 then Equation 2 is the same as
a—b—oc—--—>x—>y.

Otherwise the value depends gnThe following lines indicate the value fgr= 1, 2, 3, et cetera:

y=1: a— =T —2z
y=2: a—-—zx—a—-—x) —2
y=3: a—-—zrx—a—-—>zrx—a— - —x)—2) >z



These numbers ateige. Considel3 — 3 — 3 — 3:

3—3—-3—-3
= 3-3-3-3—-(03—-3 —2)—2
= 3-3-3-3—-2T—>2)—>2
353—-B8-23—=())—2

where the {- - - )" represents &7-deep nesting of3 — 3). You can imagine that by the time this whole
thing is expanded, there will be an absolutely mind-bogglinomber of up-arrows.

9 Famous Large Numbers

In this section we'll consider a few historically famousgamumbers.

9.1 Skewes’ Number

When the author was a child, various math books claimed tkew&s’ number was the largest that had
ever come up in a “practical’ sense, meaning that it came tipeiproof of some important result.

If you don’t understand the following details, don’t worryot much, but basically the idea is this. Let
m(x) denote the prime number counting function. It is defined téhgenumber of prime numbers less
than or equal ta:. Son(3) = 2, 7(9) = 4, et cetera.

Letli(z) be the logarithmic integral functidn

ode
li(x) = —.
i) o Int
Anyway, for “small” numbersy(z) — li(xz) < 0, but Littlewood proved that this is not always the case,
and that in fact, as — oo, the sign of the expression on the left changes infinitelgrofSkewes’ number
is is an upper bound on the smallessuch thatr(x) — li(x) > 0, but Littlewood’s proof contained no
estimates for what that value ofmight be.

Skewes, Littlewood’s student, proved in 1933 that this nenmbust be less than:

79 34
e 1010

e ~ 10 ,

Assuming that the Riemann hypothesis is true. This is sonesticalled the “first Skewes’ number, and

was the largest value to appear in a mathematical proof fongtlime. The second Skewes’ number is

even larger, and it was his best result assuming that the&iamypothesis is false. The second number
is approximately:

101000
1010

Much better bounds are known today, namel§97162914 x 103, but Skewes was the first to find a
bound.

9.2 Graham’s Number

Graham'’s number is more modern, and dwarfs Skewes’ nunthelso an upper bound, but as we shall
see, it is a terrible upper bound. Before we describe it, veglte take a short digression to graph theory.

1The function as described here has a singularity &t 1 if  >= 1 so we assume that the value is the Cauchy principal value,

for all the nit-pickers out there:
1=¢ dt T dt
li(z) = lim (/ — +/ —)
e—0 0 Int 1+e Int



A standard problem that appears in almost every introdn¢tigraph theory is this:

Suppose there is a set of six people, and every pair eithavkeach other or does not know each other.
Show that there is either a set of three people, all of whommeeach other, or a set of three people, none
of whom know each other.

The problem is usually solved by drawing a mathematical lyraiph six vertices that represent the six
people, and each pair of vertices is connected with a line [iFte is red if the two people know each
other, and blue if they do not. The problem reduces to shotiagthere must either be a triangle with
all red lines or a triangle with all blue lines. Suppose thatit the case. Consider any paiftand there
will be five lines connecting it to the other points. At ledstete of these lines are red, or three of them
are blue. Suppose there are at least three red lines comgpétto points@, R and.S. (The situation is
similar for three blue lines.) Then to avoid any pure rednigias, the lineg) R, RS andSQ must all be
blue. But then we have a pure blue trian@®.5, so we have a contradiction.

With fewer than six people, it is possible to have no sets mfghacquaintances or non-acquaintances,
S0 six are required. This number six is called a “Ramsay nuhibethis problem. It turns out that the
guestion can be turned around a little as follows: “What ésginallest number of people required so that
there is at least a set efacquaintances or a setofon-acquaintances? Whatever that number is would
be called the Ramsay number fofor this sort of problem. Even for this problem, for relativemall n,

the exact Ramsay number is unknown, but it is known that sarole sumber exists.

There are hundreds of situations like this related to bowndsizes of graphs with colored vertices such
that some condition holds, and that’s exactly what Grahaumraber is. Here is the problem that defines
Graham’s number.

Given ann-dimensional hypercube, connect every pair of verticeshimio a complete graph o2
vertices. Color these edges with two different colors. Whahe smallest value af for which every
possible coloring contains a single-colored completegnaph with 4 vertices that lies in a plane?

Again, if you don’t understand the exact problem, that'smymartant; the key thing is to see that it is
similar to our first example, and this is just a Ramsay numtresdib-graphs of size 4.

Graham proved that this number must be smaller than the nuimitenve call Graham’s number, and that
number is huge. Using the up-arrow notation introduced ictiS8e 7 (where we, in fact, looked at the
value ofg; as defined below) define:

g1 = 311113
g2 = 3193
gea = 319%3

The numbelG = gg4 is Graham’s number. By the way, an exponent on tHesymbol means that the
symbol is repeated that many times. Using Conway'’s notatierhave:

3—43—-64—-2<G<3—-3—65—2.

What is sort of amazing about Graham’s number is that as of itas/the best known bound for this
particular Ramsay number. But the best lower bound at the this article was written is 11. That's
right: the number 11, so the unknown true bound may be as sll, and as large as Graham’s number
G.

9.3 The Busy Beaver Function

Here’s one more interesting function that seems to genatagelutely huge numbers, but one of the
things that makes it so interesting is that there is no effeetay to compute it. An effective computation

is one that is known to halt with the correct answer in a finitenber of steps. The Busy Beaver function
is not one of these.



Again, to describe the Busy Beaver function, we’ll need teeta short digression to talk about Turing
machines, first described by Alan Turing. We will describesteevery simple Turing machine.

Imagine a machine with a certain numbenf internal states, one of which is the initial state, and an
additional “halted” state, so there are actuadly- 1 states. If the machine ever gets to the “halted” state,
computation ceases.

At any point, the machine is “looking at” one position on ahitxarily long tape which initially contains
zeros in every position. Each position can contain eitheera pr a one. The machine has a set of
instructions, and each instruction tells it, for every intd state what to do if it is looking at a zero or
looking at a one. The “what to do” consists of three things:

1. Whether to write a zero or one into the current positioro I@ave the value at the position the
same, just write the value that is there.)

2. Whether to move left or right one position along the tapéefte has to be movement.)

3. What the new state of the machine will be after the move.

If there aren states, there are only a finite number of Turing machines.ifgteuctions have to exist for
2n conditions, and there ade: + 4 actions that the machine can take for each of these consljtorthere
are at most4n + 4)** machines.

Some of them halt instantly, and some run forever. As a macthiat runs forever, imagine a machine
that always stays in the initial state, writes a one, and thewves to the left.

Let's look at an example of a very simple Turing machine witt fwo states (three, including the “halted”
state). We will label the states with lettetd; B, C, et cetera, and we will usH for the “halted” state.
Let's also assume that the machine begins in stat¥/e will label the movement® and L for “move
right” and “move left,” respectively, and we will indicateitiv a0 or al whether to write a zero or a one
at the current position before moving. Here is a simple ttadesmachine:

L[ o] |
A | 1RB | 1LB
B |[1LA | 1RH

Here’s the interpretation: If the machine is in stateand sees a zero, write a one, move right, and
change to stat®. A macine in stated that sees a one will write a one (in other words, leaving tpe ta
unchanged), will move left, and will change to stde The second row similarly describes what the
machine will do if it is in state3 and sees a zero or a one.

Let’s follow the action of this machine one step at a time.

start 00| O 0 |OA| O |0]0]|O
1 01]0 0 0 1 0B|10]01|0O
2 00| O 0 |1A] 1 |0]|]0O]|O
3 01]0 0 0B 1 1 0]01]0
4 0j0j0A4]| 1 1 1 /0|00
5 01]0 1 1B 1 1 0]01]0
6 01]0 1 1 1H 1 0(010

At the start, we have a tape filled with zeros, the machinedtest, and it is looking at one of the zeroes.
In the chart above, the state is written in the tape positiemtachine is looking at. Since the statelis
and there’s a zero in that slot, the table that describes #ehime says to write Aand move to the right.
The second line in the table above shows the situation apthiat. Follow along and see that after six
steps the machine finally halts and at that point has written’s.

Here is an exercise to see if you understand how these machior&k. Below is a three-state machine.
Use the same representation as above to see how hsaare written by this machine before it halts:



L [ o [ 1]

A || 1RB | 1RH
B || ORC | 1RB
C | 1LC | 1LA

Try to do this yourself, but there is a solution in Section 14.

Among all the machines with states that do eventually halt, one of them must halt withthgest string
of ones? The length of that string of ones is the output foBihgy Beaver function of,, usually written
¥(n).

Here are some known facts:

(1) =
e >(2) = 4. This can be proved by enumeration of all possible machines.
e >(3) = 6. This isnot easy to prove.
e X(4)=

Forn > 4, nobody knows:(n). 3(5) > 4098, andX(6) > 3.514 x 1018276, Asn increases, these
numbers grow astronomically.

Here is a web page that lists some results of the “Busy Beawap@tition,” including descriptions of the
record-holding machines:

http://www.logique. jussieu.fr/ michel/bbc.html

In the next section we will give an example of a fairly simplachine (that could easily be converted into
a Turing machine) that generates surprisingly large number

10 Goodstein’s Theorem

10.1 Hereditary basek notation

To state Goodstein’s theorem, we first need to describe vghatelant when we express a number in
hereditary base-k notation. Let us begin using iaas-an example.

The usual way to write the numbet3 in base2 is:
143=2"4+23 4224241,

with the understanding that we could writ@s2' and1 as2°.

But if we are trying to avoid using numbers larger than 2, wielto get rid of ther and the3 that appear
in the exponents above, so we can always Wirite 22 + 2 + 1 and3 = 2! + 1:

143 = 92°+2+1 L 9241 4 92 L 9 4

The expansion above represes in hereditary bas@-notation.

There is nothing special about baef we're interested in basé; we'd like to use the variablg only
when it requires an exponent, and otherwise use only vahragirg from0 to &£ — 1. Let’s try the same
number,143, in hereditary basé:

143=3"4+2-334+2.3+2=3""+2.32+2.3+2.
If this idea isn't perfectly clear, there will be many otheiaenples in this section that display expansions

of numbers using various hereditary bases.

10



10.2 Goodstein sequences

A Goodstein sequence begins with any integand is constructed as follows:

1. Setn, the current value of the sequencegt®etk, the current hereditary base, 2o
2. if n = 0 the sequence terminates; otherwise:

3. Write the current elementof the sequence in hereditary baseFhe new value ofi, and the next
element of the sequence, is obtained by changing all oaueesofk to k& + 1 in this expression,
and then subtracting one from that value.

4. Increase the value éfby 1, and go to step 2 above.

Let’s step through an example: we’ll construct the first fenns of the Goodstein sequence beginning
with the numbed:

Term | Hereditary notation Value | Next term

1 22 4 31

2 2.324+2.3+2 26 2.474+2.4+2-1
3 2.424+2.4+1 41 2.524+42.5+1—-1
4 2-524+2.5 60 2.624+2-6-1

5 2.-62+6+5 83 2. 7P+7+5-1
6 2- 72+ 7+4 109 2.8248+4-1

7 2.-824+8+3 139 2.-924+9+3-1

8 2-924+9+2 173 2-102+10+2—1
9 2-102+10+1 211 2112 +11+1-1
10 2.112 +11 253 2.1224+12 -1

11 2.122 411 299 2-1324+11-1

To make sure you understand what is going on, you shouldyeyihand that the Goodstein sequences
beginning with1, 2 and3 are: {1,0}, {2,2,1,0} and{3, 3, 3,2, 1,0}, respectively. If you'd like, try to
show that the first few terms for the Goodstein sequence bemgjwith 5 are: {5, 27, 255, 467, 776, ...}

The Goodstein sequence beginning witincreases, but apparently not too rapidly. To show whatllysua
occurs, let's look at the sequence beginning withand keep in mind that9 is a fairly small number:

Term | Hereditary form Value

1 22 1241 19

2 3% +3 7625597484990
3 447 43 ~ 1.3 x 10154

4 5 +2 ~ 1.8 x 102184
5 65" +1 ~ 2.6 x 1036305
6 7" ~ 3.8 x 10695974
7 7 % 87x87+7x8"+7x85+~~+7x8+7

+7 % 87><87+7><8G+7><85+---+7><8+6
+7 % 87><87+7><86+7><85+---+7><8+5 4.
47 x 82 7 x 88 +1

AT T8 T8+ 7Tx& - +TxX8+T7 | ~6x 1015151335
] 7% 97><97+7><96+7><95+~~~+7><9+7

+7 % 97X 9T +TX9%HTX 9% 4 +7x9+6

+7 % 97><97+7><96+7><95+---+7><9+5 4.
+7 x 99+2 + 7 x 99+1

FTXO? 4 TXOT +TxO+T7TX feee b TXI+6 | A 4.3 x 10369693099
With even such a tiny number &8 as the first term, this Goodstein sequence takes off likeletbiVhat

is surprising, perhaps, is that even our first example wherbe@gan at 4 does get quite large. In fact it
eventually increases - 2402653210 _ 1 after which it eventually decreases to zero, and thus texain
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What is even more surprising is that if we examine the Goaustguence beginning with any integer,
every one of them eventually converges to zero. For largérggavalues, this will take a long time and the
numbers in the sequence will get incredibly large beforg #tart down. For example, in the sequence
beginning with19, the eighth term is already larger than the largest valuaionbtl by the sequence
beginning with4.

We will not present a completely formal proof of Goodsteitiisorem which states that Goodstein se-
guences all terminate at zero, but we will provide an outtihthe proof and some comments on it later,
in Section 10.3.

Assuming that Goodstein’s theorem is true: that all Goddstequences eventually terminatedaive

can define the following function: LeF(n) be the largest value obtained by the Goodstein sequence
that begins withn. ThusG(0) = 0, G(1) = 1, G(2) = 2, G(3) = 3, G(4) = 3 . 2402653210 _

1, andG(5) is ever so much more vastly larger than that. As with functibke Ackermann’s, what

we have constructed is a very rapidly increasing functiohis Dne, however, grows much faster than
Ackermann’s. G(1000000) will be pretty big, and by now every reader of this articlevoié able to
produce much larger numbers, given that they can use thiicunG.

10.3 Proof of Goodstein’s theorem

This is not a formal proof, but if you know about infinite ordimumbers and the fact that they are well-
ordered, you will be able to expand the outline below to a firpmoof. If you don’t know about ordinal
numbers, the outline attempts to show you the basic ideas.

Unfortunately, the construction of the infinite ordinal noens requires a much more powerful theory
(Zermelo-Fraenkel set theory) than what is usually regLtiogporove theorems about the arithmetic of the
natural numbers. Usually all that is required to prove alnevsry theorem you know about the natural
numbers are the so-called “Peano postulates”.

What is doubly unfortunate is that it is impossible to provao@stein’s theorem from the Peano postu-
lates, although the proof of the fact that such a proof is issfiie is far beyond the scope of this article.

10.4 The infinite ordinals

The ordinals are basically an extension of the natural nusiheough infinite values. You can get to all
the natural number by starting withand obtaining the next by addirigo the previous. If those are the
only things you're allowed to do, then only the finite naturambers are accessible:

{0,1,2,3,4,5,...}.

To obtain the infinite ordinals, we also allow you to constra@ew ordinal that is just larger than any
infinte sequence of ordinals previously obtained. The firhite ordinal is called “omega” and is indi-
cated by the Greek letter of the same namé. ‘Such ordinals are called “limit ordinals”, of which is
the first.

But oncew is allowed, since we are able to add one, we can obtaif:l, w + 2, w + 3 and so on. Since

w + n is a valid ordinal for any natural number we can include the limitob, w + 1, w + 2, ..., and

it will be w + w, which is usually denoted hy x 2, the second limit ordinal. Then of course we can get
wx2+1,wx2+2,...,and the limit of that sequence of ordinals will be thiedtimit ordinal: w x 3.

In a similar way, we can obtain the limit ordinalsx 4, w x 5, ..., and we can then construct another
limiting sequence:
w,w X2, wx3,wx4,....

The limit of that will bew x w = w?. Thenwe’re backta? + 1, w? +2,...,w? +w, W’ +w+1,...,
Wt wX2, WX 2,wE X241, w3, W W

Obviously, we've skimmed over a lot, but all this can be dona very formal and logical way.
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10.5 Well-ordering of the ordinals

The amazing thing is that this set of infinite ordinal numhbsrsvell-ordered”, and that means that any
decreasing series of ordinals is of finite length: it is ingbke to construct an infinite set of decreasing
ordinals, no matter how large a one you start with.

The idea of well-ordering is obvious if we just look at the ural numbers: If you begin with some
number and each successive number in the sequence is sy@llenust stop at zero after a finite number
of steps. If you start with a million and start stepping dowoy can’t possibly take more than a million
steps. Obviously you can make a decreasing sequence odhatumbers as long as you want, but every
one is finite.

The infinite ordinals behave the same way. Let’s look at soxaen@les. First, suppose you start “in-
finitely far along”, atw itself. What is the next smaller ordinal in your sequence?

Well, w is the first infinite ordinal, so every smaller ordinal is fmitOnce you take that first step down,
to a million, or a billion, or to a googleplex, there are onlfirate number of additional steps left to go.
When you take that one step down, it is enormous.

Sow won't work as an ordinal from which you can make an infinite fn@emof steps down. It's clearly
pointless to start fromv + &, wherek is finite, since after at mogt steps you'll be back at, and from
there it's only a finite number of steps to the bottom. How dhow 2?

Well, the first step down will take you t@ + k, wherek finite, so that's no good. There are similar
problems withw x 3, w x 4, orw x k, wherek is finite: it's only a finite number of steps down to get rid
of each multiple ofv.

How aboutu?? Well, the first step down has to have a largest term of the formk, so that's no good,
either. We have to be a little careful here, since here’s alrmsrsmaller thao?:

w X 10004+ w x 999 + ... + w x 2 + w + 1000000,

but the expression will only have a finite number of terms, ey must be knocked off, one by one.

In fact, you can sort of imagine an inductive prédtat there are always a finite number of steps to the
bottom. Suppose that the ordinals the first one from which there is an infinte descending secgle

If s is of the form\ + 1, then the first step down is th, from which there are only a finite number of
steps to the bottom or to a number even smaller th&rom which there are also at most a finite number
of steps down. Similarly, ik is one of the “limit ordinals”, the first step down will be to@from from
which there are only a finite number of steps to zera; $dll share that property.

Try to figure out what might happen witht’ — a pretty large ordindl You can play around with this a bit
if you like, and perhaps that will make things clearer.

10.6 Proof of Goodstein’s theorem

Anyway, if you believe that the infinite ordinals are weldered, the proof that Goodstein sequences all
terminate at zero is not too hard. What we will do is replacagterm of such a sequence in hereditary
notation by an ordinal number that is clearly larger thaWe will show that the sequence of ordinals
thus obtained is a decreasing sequence, so the Goodsteiensegwill be dominated by a sequence of
ordinals that we know tends to zero, and hence the dominatpeesice will also tend to zero.

The dominating ordinal is simple: just replace all occuceshof the base by. So for example, in our
example of the Goodstein sequence beginning witithe first few terms, and their dominating ordinals
are:

2This is actually not a proof by finite induction that you'reopably familiar with, but rather a proof by “transfinite inction”.
Itis, however, very similar to the usual proofs by finite ietian.
3Well, “pretty large” is optimistic: almost all ordinals, eburse, are larger.
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Term | Hereditary form| Ordinal

1 22 4241 W f w1
2 33 +3 W’ 4w

3 47 13 w43

4 5% 42 w42

5 65" +1 w +1

6 77 w”

On the next step, of course, we takbuge step down in the ordinals. The largest term in the exponent of
the bottomw contains only finite powers of; notw®. If you want to see what it looks like, just substitute
w for every8 in the expansion of terrii that we did in the previous section for the Goodstein segeienc
beginning with19.

10.7 Behavior of Goodstein sequences

Every Goodstein sequence behaves similarly in the follgveiense: as long as the base itself appears
in the expansion with even a multiple 8f the sequence will increase. That's because when the base
increases for the next term, the increase will be multiptigét leas, and onlyl is subtracted.

Goodstein sequences finally reach a point where they haveltbwing form:
B x1+k,

whereB is the base and is a (usually huge) constant. At this point, the sequengssstanstant fok
steps, since at each step, althougis reduced byl, B is increased by. Finally, the term looks like
B x 1+ 0 and afterl is subtracted from that, the base will not appear in the esgioe; only a constant
will. After this, the sequence steps down to zero, one urattahe.

So every Goodstein sequence increases (often incredipiglyaat first), and keeps increasing until it
obtains the form above. Then it is constant for a long timigrafhich it reduces to zero by one at each
step.

11 Are We Cheating?

In the previous sections we have presented some very laméerns in a very compact way, but since
each of these methods required a few paragraphs of exmlanatien’t we really cheating? Shouldn’t we
count the description of the method?

If you have a contest to “describe the largest number you sargu symbols”, you've got to say at the
beginning what the allowable symbols are. Otherwise youroagine a many-page description of a huge
number where the last sentence is, “Call that nundb&rThen the description is a single charactex,™
and that’s not really fair.

One good way to structure such a contest might be to descrilkial calculator that has certain buttons
on it, and the contest is something like, “Make the largestlner in the display you can with at mast
button-presses.” If the calculator has a factorial buttoritothen9! might be the winning candidate for
the two-button-press version of the contest.

If the calculator is programmable, then you would need tontdhe strokes necessary to create the
program that is run with an additional button press, et eeter

In any case, to end this article with an interesting examipi@gine a calculator that has a bunch of
variables in it, (say, A, B, C, ..., all of which are initialkero), and only allows the following sorts of
operations:

e A+ + Incrementthe value of variablé by 1.
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e A— — Decrementthe value of variableby 1 unlessA = 0.

e A:x If A+#0gotoline number x; otherwise, continue to the next line.

Here is a 23 line program written in the language above. Tfigiore out how large the numbers B,
C, D, andF get by the time the program terminates. It is fairly impressgiven that essentially the only

” o«

allowable operations are “add one”, “subtract one”, an@tizh if non-zero”.

1. E++ 9. A++4+ |17 D—-—
2. E++ |10 B—— |18 D:5
3. E++ |11. B:8 19: D+ +
4. E++|12. C—-—- |20 C——
5. B++|13: C:5 21: C::19
6: A—— |14 C++ |22 E——
7. A:5b 15 A—— |23: E:5
8 A++4+ 160 A:14

12 Even Larger Numbers

In a sense, all the numbers described in previous sectiensngrcompared to what we will encounter
here. Up to this point, the text in this article contains fettan6000 words, and think of all the different
large numbers we have defined.

As a closing idea, consider the functidf(n) which is defined to be “the largest integer than can be
defined inn or fewer English words.” This is obviously very sloppy, bl¢tidea is not so bad. We could
define a perfectly formal language and make a definition ke ¢ne precise, but that requires a lot of
work. Let us just stick with English for now.

What is F'(1)? Perhaps “googolplex™? It's at least that big. We know th&8000) is far more than
sufficient to describe all the numbers here so far, and igarcthatfar larger numbers could have been
defined. But with thig”, we can do all the tricks again. Whatif(1) = F(1), andG(n) = F(G(n—1)),

for example? We already know th@f2) is at least as big as the largest number that could be dedcribe
with a googolplex words.

These numbers, of course, will not be computable in the s@nsesthat the Busy Beaver numbers in
Section 9.3 are not. But they exist, and are guaranteed toibeaginably huge.

It's always good to keep in mind, however, what is sometinadked “The Frivolous Theorem of Arith-
metic”: Almost all numbers are very, very, very large. Intfaven considering all the particular huge
numbers listed in this article, almost all numbers are moualgh larger than any of them. ...

13 Pedagogical Notes

For younger students (in middle school, for example), itsb@ably a bad idea just to write down the
definition of Ackermann’s function without an introduction

This is a good time to do a review of functional notation. Fxaraple, just review some standard, simple
function definitions, emphasizing the idea that the deéiniprovides a rule (or rules) for determining the
output given the input.

If, for example, the function is defined as:
f(SC) = I2 - 37

then to evaluatg for any particular input, you simply substitute the inpulssfor thex on the right-hand
side of the equation above and evaluate it. In this examplesimply square the input value and subtract
3,50f(5) = 5% —3=25—3=22,0r f(20) = 202 — 3 = 400 — 3 = 397.
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Ackermann’s function, unfortunatley, is more complex irotways. First, it's a function afvo variables,
and second, it is defined recursively. Rather than jump riglintroduce the two ideas in two steps. First,
look at functions of more than one variable.

An example might be this: The ticket price at a movie thea®&10 for an adult, and $6 for a child. What
we seek is a formula to tell us the admission cost for a mixedigof adults and children. Here is the
answer:

f(a,c) = 10a + 6¢,

where f(a, ¢) represents the admission cost for a group consistingadults and: children. Make it
clear why this is the correct function, and why, to deterntireenumerical output, you need to know both
the number of adults and children.

But even without complete information, you can simplify foemula with partial information. For exam-
ple, suppose you know that the group is going to consist ofultsicbut you don't yet know the number
of children. If we letc stand for the (as yet unknown) number of children, the tatat will be:

f(4,¢) =10-4 4 6¢ = 40 + 6c.

Using this simpler function, all you need to do is plug in tleue ofc to obtain the final cost.

The other type of function, a so-called “recursive functigra little more interesting. Here is perhaps the
best example to use, since the function is already knowneetidents, but probably never in the form
shown below. The functioft’, defined below, is defined for all positive integers.

1 @ ifn=1
F(n)_{n-F(n—l) :oifn>1 (3)

The only time you know the answer immediately is if the inpalxe happens to be zersi(1) = 1. But
what is the value of’'(4)? Well, you just follow the rule stated in the second line ofi&ton 3. The
input value 4, is not equal to zero, so you must use the second rule:

F(4)=4-F(3). (4)

This doesn’t seem to help much since we don’t know the valug(8j, but if we have faith, we can just
reuse the definition. (A mathematician would say that we aneguEquation 3 recursively.) To evaluate
F(3) we first note that the input valug, is not zero, s&'(3) = 3- F'(2). Substituting this value foF'(3)
into Equation 4 yields:

F(4)=4-(3-F(2), (5)

and we're now left with the problem that we don’t know the \&abf f(2). But we can reuse Equation 3
yet another time to obtaif(2) = 2 - F(1), so the original Equation 4 now looks like:

F4)=4-3-(2-F(1)),
and now we're in good shape because we know H{@f = 1, so we have:
F4)=4-(3-(2-1)) =4! =24.
Try evaluatingF'(6) using the same method, but as soon as you get to:
F(6) =6-(5- F(4)),

you can tell the kids that we don’t need to go farther since ineady worked out the value df (4),
which was4! = 24. Thus:
F(6)=6-5-4=6-5-4-3-2-1=6!

Finally, point oiut that for this recursive function at légand this will usually be the case), the easiest
way to figure out what’s going on is not to start with large espalthough that will work, but to start
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with small ones. For this example, we know the valug¢t ) immediately, so work orF'(2) which we
find to be2 - 1. Once we know the value df(2), we can see thaf(3) =3- F(2) =3-2-1=3!. Then
we will see thatF'(4) can easily be evaluted in terms Bf3), and so on. After just a few steps like this,
it's easy to see (and to prove, if you wish) tHégn) = n!.

Notice that the recursive definition is in some ways nicenttiee usual formula fon!:
nl=n-(n—-1)-(n—2)---3-2-1,

since we never need to write the somewhat vague™

In any case, after this introduction, you can look at the ntoraplicated Ackermann’s function which is
both a function of two variableand recursive.

14 Turing Solution

Here is the simulation for the following Turing machine. $haachine, in fact, is an example of a three-
state machine that achieves the longest row®before halting. Here’s the machine:

L [ o [ 1 ]

Al|l| 1RB | 1RH

B || ORC | 1RB

C|l 1LC | 1LA

And here’s the simulation:

start 01010 0 0A 0 0 0 0
1 o000 O 1 |0B]| 0 0 0
2 01010 0 1 0 0C 0 0
3 o000 O 1 |0C| 1 0 0
4 01010 0 1C 1 1 0 0
5 ojojofloAa]| 1 1 1 0 0
6 01010 1 1B 1 1 0 0
7 0[0]0 1 1 1B 1 0 0
8 01010 1 1 1 1B 0 0
9 0[0]0 1 1 1 1 0B 0
10 01010 1 1 1 1 0 oC
11 0[0]0 1 1 1 1 oC 1
12 01010 1 1 1 1C 1 1
13 0[0]0 1 1 1A 1 1 1
14 01010 1 1 1 1H 1 1
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