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A mathematician named Klein
Thought the Möbius band was divine.
Said he, “If you glue
The edges of two,
You’ll get a weird bottle like mine.

-Anonymous

1 Surfaces

What shape is the earth? Round? Round like what? Like a pancake? No, it’s round like a soccer
ball. But how do you know? ...Really, how do you know? Is it because you’ve seen photos of the
earth from space? Well, people figured out that the earth is round long before we figured out how
to build rocket ships (or cameras, for that matter!).

Figure 1: A toroidal Earth. Why not?

As you might have learned in school, scientists as far
back as the ancient Greeks theorized that the earth is round.
Although they offered no substantive proof of their theo-
ries, Pythagoras, Plato, and Aristotle were all supporters
of the spherical earth theory, mostly based on the curved
horizon one sees at sea. Surely this suggests that the earth
is not flat like a pancake, but how can we know that the
earth isn’t some other round shape, the torus, for example?

Well, if we can walk around the entire earth, then we
can come up with plenty of reasons that it’s not a torus.
The most obvious, perhaps, is that if the earth were a torus,
there would be some places where we could stand and look
directly up into the sky and see more of the earth! Also,
there would be places where the curve of the horizon would be upwards instead of downwards.
But how can we really, truly know that the shape is like a ball and not some other strange shape
that we haven’t yet thought of? An inquisitive person studying this question might begin by
assembling all the maps they can find, poring over the overlaps and trying to figure out how to
patch them up. Given enough maps to cover the surface of the earth, we can tell that the earth is
spherical! We just have to patch together the maps along their overlaps.
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Figure 2: A surface with boundary

This basic idea is exactly the idea that
underlies the way mathematicians think
about surfaces. Roughly speaking, a sur-
face is a space in which every point has
a neighborhood that “looks like” a two-
dimensional disk (i.e. the interior of a
circle, say {x, y ∈ R2

| x2 + y2 < 1}.)1 A
sphere is an example of a surface, as is the
torus. Some of our natural notions of sur-
faces don’t quite fit this definition since they
have edges, or places where you could fall
off if you weren’t careful! Mathematically,
these are surfaces with boundary: spaces
in which every point has either a neigh-
borhood that looks like a two-dimensional
disk or half of a two dimensional disk (i.e.
{x, y ∈ R2

| x2 + y2 < 1, y ≥ 0}). The old cir-
cular model of the earth where you can sail off the edge is an example of a surface with boundary.
Another example is a cylinder without a top and bottom.

Now that we know what a surface is, we want to try to figure out what kinds of surfaces there
are. From a topologist’s perspective, we are interested in the general shape of the surface, not in its
size. Although notions of size and distance (geometric notions) are important in reality, topologists
seek to understand the coarser shapes as a first approximation. For example, from a topological
point of view, a sphere is a sphere, it doesn’t matter how large the radius is. We allow ourselves
to deform spaces as if they were made of rubber. We’ll consider two surfaces to be the same if we
can stretch, shrink, twist, push, or wriggle one surface around until it looks like the other surface.
But we have to be nice in our deformations: we don’t create holes or break or tear any part of our
surface. So, an apple would be considered the same as a pear, doesn’t matter if it has a big lump
on one end. A classic joke along these lines is that a topologist can’t tell the difference between a
coffee cup and a donut, since if we had a flexible enough donut, we could make a dent in it and
enlarge that dent to be the container of the coffee cup, while smushing the rest of the donut down
in to the handle of the coffee cup.

Let’s begin by trying to make a list of surfaces that we know. What surfaces can you think
of? The first one that comes to mind is the surface of the earth: it’s a sphere. (Note here that
we’re only talking about the surface of the earth, not all the dirt, water, oil, and molten rock that
make up its insides! Just the surface. Like a balloon.) Another surface that comes up a lot is

1A precise definition of a surface can be found in the appendix of this note.
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the torus, which is shaped like an innertube. For the most part today, we’re going to restrict our
investigation to compact (which means “small” in the sense that they can be made up of finitely
many disks patched together) and connected (made of one piece, i.e. you can walk from one point
to every other point on the surface without jumping). We will see some examples of surfaces
with boundary because they are surfaces that you may be familiar with. For example, a cylinder
without a top or bottom is a surface with boundary. A Möbius strip is a surface with boundary.

2 Representing Surfaces on Paper

Figure 3: Map of the world

Drawing surfaces on paper or on the
blackboard is difficult. However, we’ll
see that it’s easy to record the instruc-
tions for making them with a simple
diagram on a flat piece of paper.

We take our inspiration from maps
of the world. In a typical world map,
the globe is split open and stretched a
bit so it can be drawn flat. We all under-
stand that if we walk out the right side
of the map, we come in through the left
side at the same height. This is a pretty
useful idea! We can imagine a seam on
a globe that represents this edge. We
can think of taking the map and gluing
up the left and right edge to return to
our picture of the globe.

There is one slight dishonesty in the
typical world map: the representations

of very northernly and southernly parts of the earth aren’t very accurate. They’re much bigger
than they really are! In fact, the entire line at the top edge of the map really represents just a
single point on the globe, the north pole. Similarly for the bottom edge and the south pole. We
can make a more honest map by shrinking these edges down so that we have one point at the
top and one point at the bottom, representing the north and south poles, respectively. Then our
resulting picture is a circe! It has the same properties with respect to walking out through the right
edge and coming back in through the left. We can record this information by drawing arrows on
the boundary of the circle to indicate how we are to glue up the picture to create a globe. It’s a
very nice and easy to imagine picture: if we glue up one semicircular edge of a circle to the other
semicircular edge (without twisting!) then the resulting surface is a sphere. Let’s see some more
examples of how this works.
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Example 2.1 (The cylinder). We can create a cylinder by using a piece of paper and gluing the ends
together. Thus we can write down instructions for making a cylinder by drawing a square and
labeling a pair of opposite edges with a little arrow that indicates gluing them together.

Example 2.2 (The torus). Since we are mathematicians, we come up with fancy names for ordinary
objects. The surface of an innertube is referred to as the torus. The diagram below represents a
gluing diagram for the torus. To see this, first imagine bringing two of the edges together to form
a cylinder (without top and bottom, just the sides of a tin can). Since the circle at the top of the can
and the circle at the bottom of the can are to be glued together, we can imagine stretching the can
around and gluing them to obtain a surface that looks like the surface of a donut. Let’s practice
thinking about how walking around on the surface is represented on the diagram. If we walk out
the left edge, we come back in the right edge at the same height. Similarly, if we walk out the top,
we come in the bottom at the same left-right position. It’s like PacMan!

Exercise 2.3. Imagine you are a little two-dimensional bug living inside the square diagram for
the torus above. You decide to go for a walk. Trace your path. Be sure to exit some of the sides
of the square and be careful about where you come back in! Do this several times. Here are some
diagrams to practice on.
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Example 2.4 (The Möbius Strip). What happens if we start with a square and identify a pair of
opposite edges, but this time in opposite directions? The resulting surface is a Möbius strip!

Exercise 2.5. A cylinder has two boundary circles. How many boundary circles does a Möbius
strip have?

Example 2.6 (Klein bottle). What happens if we reverse the direction that we glue one of the pairs
of edges in the diagram that we had for the torus? We can begin by again gluing up the edges that
match up to create a cylinder. But now if we try to stretch it out and glue the boundary circles
together, we see that the arrows don’t match up like they did for the torus! We can’t just glue
the circles together because our gluing rule says that the arrows must match up. The only way to
imagine this is to imagine pulling one end of the cylinder through the surface of the cylinder and
matching up with our circle from the inside. The resulting representation of the surface doesn’t
look like a surface, but it really is! It’s funny appearance is just a consequence of the way we had
to realize it in our three-dimensional world.

Exercise 2.7. Imagine you are a little two-dimensional bug living inside the square diagram for
the Klein bottle above. You decide to go for a walk. Trace your path. Be sure to exit some of the
sides of the square and be careful about where you come back in! Do this several times. Here are
some diagrams of the Klein bottle to practice on.
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Example 2.8 (The projective plane). What happens if we reverse not just one of the pairs, but both
of the pairs of edges in our diagram for the torus? The resulting surface is called the projective plane
and it is denoted RP2. It’s hard to imagine what this surface looks like, but our square diagram
will allow us to work with it easily!

Exercise 2.9. Imagine you are a little two-dimensional bug living inside the square diagram for
RP2 above. You decide to go for a walk. Trace your path. Be sure to exit some of the sides of
the square and be careful about where you come back in! Do this several times. Here are some
diagrams to practice on.

Definition 2.10. A gluing diagram for a polygon is an assignment of a letter and an arrow to each
edge of the polygon.

With this general definition, not every gluing
diagram represents a surface. For example, if
three edges are labeled with the same letter, then
these glue up to give something whose cross sec-
tion looks like h! However, if we assume that
the edges are always glued in pairs, then the
resulting pasted up object will always be a sur-
face. It’s clear that every point in the interior of
the polygon has a neighborhood that looks like
a disk. A point on one of the edges but not on a
corner has a neighborhood that looks like a disk
if we think about the corresponding point on
the edge that it’s glued to and draw half-disks
around each of them. A point on one of the cor-
ners can similarly be given a neighborhood that
looks like a disk.

Example 2.11. The squares that we thought
about above for the cylinder, the torus, the Klein
bottle, the Möbius strip, and RP2 are gluing di-
agrams for these surfaces.

Exercise 2.12. What surface is represented by
the gluing diagram below?
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There might be many different diagrams that represent the same surface. For example, we
could draw the diagram for the torus in the following ways (and this isn’t even remotely all of
them!). The important thing for a square to represent the torus is that opposite edges are identified
without twists.

One technique for showing that two gluing diagrams represent the same surface is to take one
of the diagrams and cut it and reglue it (possibly repeatedly) until it looks like the other.

Example 2.13 (A Klein bottle is made from two Möbius strips). In this example, we’ll show that
gluing two Möbius strips together along their boundary circles results in the Klein bottle. This
explains the limerick at the beginning of these notes! First, we’ll cut and rearrange the gluing
diagram for the Möbius strip so that the boundary circle is displayed in one continuous piece.

Now we can see that the top edge of the triangle is the boundary of the Möbius strip, so this makes
it easier to take two copies of the Möbius strip (in its new gluing diagram) and glue them together
along their boundary circles (the boundary circles are labeled c in the diagram below on the left).

7



Hrmm.. This doesn’t quite look like our standard diagram for the Klein bottle! Your job in the next
problem is to figure out how to cut it and rearrange the pieces so that it looks like the standard
diagram.

Problem 2.14. Use cutting and regluing techniques to show that the gluing square above right
represents the Klein bottle. Hint: Cut along a diagonal.

Problem 2.15. In the standard gluing diagram
for the torus, all four corners represent the same
point in on the surface of the torus. Cutting out
a disk around this point is the same as cutting
out the corners in the gluing diagram. Paste
together the corners 1, 2, 3, and 4 so they form
a disk. Do the same for a Klein bottle. What
happens for RP2?

Problem 2.16. What surface results from gluing a disk to the boundary circle of a Möbius band?

Problem 2.17. Which of the following diagrams represent equivalent surfaces? (Note that each
diagram represents its own surface. It is not intended that you glue all the a’s together, etc, but
only the ones on that specific diagram.)
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In a gluing diagram, we identify the edges of a polygon. This means that sometimes, the
corners of our polygon are not distinct points. For example, in the standard square diagram for
the torus, all four corners really represent the same point in the surface.

Exercise 2.18. Which corners in the standard square diagram for the Klein bottle represent distinct
points in the surface? What about in the standard square for RP2?

Exercise 2.19. In each of the following diagrams, identify which corners represent the same point
and which are distinct.

Problem 2.20. Since we are topologists, we don’t care so much whether lines are straight or curved.
We could also think about gluing diagrams that result from dividing a circle into subsegments
(edges) and assigning letters and arrows to these edges. Our example of the circular world map is
a gluing diagram for the sphere S2 as a circle divided into two edges. Find a similar diagram for
RP2.

One way to record the gluing is by writing down a word that describes what letters we see
when we walk around the edges of the gluing diagram. Begin at one corner of the diagram and
walk around the perimeter of the diagram. When we walk along an edge labeled with a letter,
say a, in the same direction as its assigned arrow, we write that letter. If we walk along an edge
labeled with a letter, say a, but in the opposite direction of its assigned arrow, we write down a′.
The string of letters contains the same information as the gluing diagram, so long as we remember
the code that translates between the words and the gluing diagram.

Exercise 2.21. Draw the gluing diagrams associated with the following words: abab, abca′b′c′, aba′b,
ba′ba′, ab′ab, bacc′b′a.

Problem 2.22. Do any of the words in the previous exercise represent the same surface?

Problem 2.23. Consider gluing diagrams for a square that glue together pairs of edges. Let’s use
the letters a and b to denote the pairs of edges.

(a) How many are there? Hint: To count them, you need to keep track of the letter of each edge
and also its direction. Use the idea above of walking around the edge and recording the word
you walk along. So, this is really a question that asks: how many four letter words are that
use the letters a, a′, b, b′ such that both a and b appear exactly twice (where twice means with
or without the decoration ′, e.g. you could have a and a, or a and a′, or a′ and a′ in your list,
but you cannot have a appearing only once or three times).
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(b) But this number is clearly too big if we want to count the different surfaces represented by
these gluing diagrams. For example, if one diagram can be obtained from another by rotating
it a quarter turn to the right, then these must represent the same surface. Similarly, if one
diagram can be obtained from another by flipping the square over, they also must represent
the same surface. By rotating and flipping our diagrams, we can reduce to the case where the
left edge of the square is labelled with a and the arrow points up. Convince yourself that any
gluing diagram for the square can be flipped and rotated so that it is in this position.

(c) Now that we’ve determined that we can reduce to the case where the left edge of the square
is labelled with a and with an upward pointing arrow, try to make a complete list of gluing
diagrams that doesn’t have any “obvious” repeats. By “obvious,” I mean there isn’t a sequence
of rotations and a flip that will take one diagram on your list to another.

(d) Can you identify any of the diagrams as surfaces that we know?

(e) Peek to the last page of these notes to see the complete list and to check your answers. Two
of our diagrams turn out to represent the Klein bottle and two represent the projective plane
RP2. Find a way to cut and paste the non-standard diagrams of the Klein bottle and RP2 so
that they look like the standard ones.
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3 Connected Sum

Thinking about a donut with two holes, you might immediately imagine it as two donuts stuck
together. This is the idea behind the connected sum of surfaces. The connected sum will give us a
way of building more complicated surfaces out of the simpler ones that we already have.

Definition 3.1 (Connected Sum). Given surfaces A and B, the connected sum of A and B, denoted
A#B, is formed by cutting a disk from A and a disk from B and gluing the surfaces together along
the boundary.

The connected sum is relatively easy to visualize for tori, but for our surfaces that aren’t so
easy to draw, we would love to have a way of denoting the connected sum in our gluing diagrams.
Here’s how. Beginning at a corner in the diagram for A, cut out a little loop and orient it with
an arrow. Do the same at a corner of B. Now open up the surface at that corner so that the loop
becomes a straight line. Glue the surfaces together along the line. Now you can reshape and
redraw your gluing diagram so that it is more regular and prettier, if you like.

Example 3.2. The pictures below show how this works for two tori T#T. I’ve chosen the labeling
on the torus diagrams to make the resulting connect sum pretty, but you could begin with any
diagram for the torus.
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Problem 3.3. Following the steps outlined above, find a polygon that represents T#T#T. Now do
T#T#T#T. Generalize this to the connected sum of n tori.

Problem 3.4. Show that RP2#RP2 = K.

Problem 3.5. In this problem, we’ll show that T#RP2 = K#RP2.

(a) Express T#RP2 and K#RP2 as gluing diagrams for hexagons. You’ll need the “two-edged”
gluing diagram for RP2 from Problem 2.20.

(b) Cut the hexagon for T#RP2 along a diagonal so that you can glue together the edges that
represented RP2.

(c) Take your answer from above and cut off a triangluar disk and paste it back along another
edge.

Problem 3.6. Use gluing diagrams to prove that connected sum with the sphere S2 returns the
same surface. Hint: First draw a circular gluing diagram for S2.

In the following sequence of problems, we work towards the classification of surfaces by
studying the gluing diagrams in a systematic way.

Problem 3.7. Suppose a gluing diagram for a surface has two consecutive edges labeled with the
same letter in opposing directions. Show that this pair of edges represents connect sum with S2

and can thus be eliminated.

Problem 3.8. Suppose a gluing diagram for a surface has two consecutive edges labeled with the
same letter in the same direction. Show that this pair of edges represents a connect sum withRP2.

Problem 3.9. Suppose a gluing diagram for a surface has two nonconsecutive edges labeled with
the same letter in the same direction. Find a way to cut and reglue the diagram so that the two
edges are consecutive, thus showing that this also represents a connect sum with RP2.
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Problem 3.10. Suppose a gluing diagram for a surface S has two nonconsecutive edges labeled
with the same letter a in opposing directions. These edges divide the boundary of the gluing
diagram into two distinct pieces. Let’s call one piece α and one piece β. In the pictures below, I’ve
used a dotted curve to represent these pieces because we don’t yet want to make any assumptions
on what they look like.

(a) Gluing these edges together results in a cylindrical object whose boundary consists of the
remaining edges of the gluing diagram, so one boundary piece of the cylinder is α and the
other is β. Suppose all edges in α are glued to other edges in α and similarly for β, so that no
edge from α is glued to any edge in β. Find a way to cut the cylinder and then glue in disks to
create two gluing diagrams for surfaces: one whose boundary is α and one whose boundary
is β. Notice that you’ve decomposed S into two surfaces Sα and Sβ such that Sα#Sβ = S.
Moreover, both Sα and Sβ have fewer edges than S. (This will be important for an induction
argument later.)

(b) Now suppose some edge in α is glued to some edge in β. Let’s call that edge b.

(i) If both occurrences of b are oriented in the same direction, then this represents a connect
sum withRP2 by Problem 3.9. Thus we can split off thisRP2 and the resulting two gluing
diagrams have fewer edges. (There’s nothing to prove in this part of the problem. Just
convince yourself that these statements are true.)

(ii) If the occurrences of b are oriented in op-
posite directions, we’ll show that this rep-
resents connect sum with a torus. We can
draw our diagram as in the picture to the
right. Here α1 and α2 are the pieces of α not
containing b. Similarly for β1 and β2.

- Draw a picture of the cylinder that results from gluing along a.
- Now bend the cylinder around so that you can glue along b. This will result in a torus

minus a disk, where the boundary is comprised of α1, α2, β1, and β2.
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- Now draw a circle around the missing disk, leaving a bit of space between the edges
of the disk and your circle. Cut this part out of the surface. And draw it separately
on your paper (it’s an annulus with outside boundary your cut and inside boundary
α1, α2, β1, and β2.

- Flip the disk inside out so that the cut is on the inside and α1, α2, β1, and β2 are on the
outside. Explain why this construction has split off a torus via undoing connect sum.

Problem 3.11. Putting together the previous problems, we have almost shown that every gluing
diagram of a (2n)-gon whose edges are identified in pairs can be reduced to a connected sum of
torii or a connected sum of RP2’s. Formalize the argument using induction, and carefully citing
the relevant problems.
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4 Formal Definitions

In this section, we record the formal definitions, for the interested reader.

Definition 4.1 (Topological space). A topological space is a set X together with a collection of subsets
τ satisfying the following conditions:

(i) The empty set and X are in τ.

(ii) The union of any collection of sets in τ is again in τ.

(iii) The intersection of any finite collection of sets in τ is again in τ.

The collection τ is called the topology on X. The elements of X are generally referred to as points
and the elements of τ are referred to as open sets.

Definition 4.2 (Continuous map). If (X, τ) and (Y, σ) are topological spaces, a function f : X → Y
is said to be continuous if f−1(U) ∈ τ for all U ∈ σ.

Definition 4.3 (Hausdorff). A topological space (X, τ) is Hausdorff if for every x1, x2 ∈ X, there exist
U1,U2 ∈ τ such that xi ∈ Ui and U1 ∩U2 = ∅.

Definition 4.4 (Basis). A basis for a toplogy τ on a set X is a collection B = {Uλ ∈ τ | λ ∈ Λ} such
that every other set U ∈ τ can be written as a union of elements of B.

Definition 4.5 (Second-countable). A topological space is second-countable if it has a countable
basis.

Definition 4.6 (Homeomorphism). A continuous bijection f : X → Y between topological spaces
X and Y is called a homeomorphism. If a homeomorphism exists between X and Y, we say that X
and Y are homeomorphic.

Definition 4.7 (Manifold). A n-dimensional manifold is a second-countable Hausdorff topological
space together with a collection of open sets {Uα}, such that M =

⋃
α Uα, and homeomorphisms

ϕα : Uα → Rn. The maps ϕα are called charts.

Definition 4.8 (Manifold with boundary). A n-dimensional manifold with boundary is a second-
countable Hausdorff topological space together with a collection of open sets {Uα}, such that
M =

⋃
α Uα, and homeomorphisms ϕα : Uα → Rn or ϕα : Uα → Rn

+, where Rn
+ = {(x1, . . . , xn) ∈

Rn
| (x1, . . . , xn) and x1 ≥ 0}. The maps ϕα are called charts.
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All possibilities for gluing the square are shown below. They are the Klein bottle, RP2, the
sphere, the Klein bottle, the torus, and RP2, respectively.
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