Curious Number Systems

Berkeley Math Circle

16 April 2013

Ted Courant

tcourant@bentleyschool.net

■ Base-Two

3.

a)

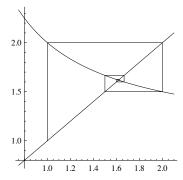
- 1. Investigate the claim that every integer has a unique representation as a sum of powers of 2.
- 2. Use the Russian Peasant Method to multiply
 - 16×15 b) 14×26 c) 13×28
 - a) Show that $7 = 111_2$ directly.
 - b) Verify that $15 = 1111_2$ by using part a).
 - c) Verify that $31 = 11111_2$ by using b).
 - d) How does this show that $2^n 1 = 111 \cdots 11_2$?
- 4. Use induction to prove the same fact, namely that $2^{n+1} 1 = 2^n + 2^{n-1} + \dots + 2 + 1$
- 5. Among 50 bottles of soda, there is one containing a deadly poison.
 After 24 hours the poison causes complete paralysis.
 You have 6 lab rats. Devise a strategy to determine which bottle contains the poison.
 What is the least amount of time in which you can do this?
- 6. Examine your set of six magic cards. Given any subset of the six, find a quick method to determine what number appears uniquely on those cards and not the others.
- 7. Investigate the claim that every integer has a unique representation as a sum of single Fibonacci numbers. Use this fact to convert kilometers to miles or miles to kilometers.

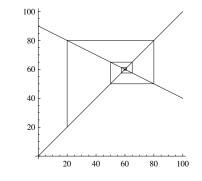
Division After the Decimal

1. Practice the division algorithm; show that $\frac{1}{7} = .\overline{142857}$.

Repeat with $\frac{2}{7}$, $\frac{3}{7}$. Make a conjecture about $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$.

- 2. The pictures below demonstrate that $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1$, and $\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots + \frac{1}{4^n} + \dots = \frac{1}{3}$ and $\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^n} + \dots = \frac{1}{2}$.
- 3. Verify that 1 = .9999 and investigate the base-two counterpart of this statement.
- 4. Use the division algorithm to verify that $\frac{1}{3} = (.010101 \dots)_2$ and $1 = (.111 \dots)_2$ Note that this is a counterpart to problem 4.
- 5. Verify that $\frac{1}{5} = (.001100110011 ...)_2$ two ways.
 - Use this to compute $\frac{2}{5}$ and $\frac{3}{5}$ without using the division algorithm.
- 6. With a mark at x on a strip of paper, we can fold to meet x from either the right or the left. Verify that the right crease ends up at $\frac{1+x}{2}$ and the left crease is at $\frac{x}{2}$.

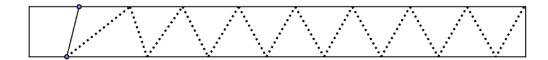

0	$\frac{x}{2}$	x	$\frac{1+x}{2}$	1
	1		1	


- Use the previous observation to show that a sequence of left-right-left-right-left... folds result (ultimately) in a crease at a thirds mark.
 We saw that right-right-left-... results in a crease at the one-fifth mark. What sequence results in a crease at the one-seventh mark.
- 8. If we think of x as a decimal number base-2, then the left-fold pushes a *zero* onto the front, resulting in a crease at $(.0 x)_2$; a right-fold pushes a *one* onto the front, resulting in a crease at $(.1 x)_2$.
- 9. Use problem 2 to show that a sequence of left-right-left-right-left... folds result (ultimately) in a crease at a thirds mark. What sequence of folds will result in a crease at a fifths mark? A seventh mark?

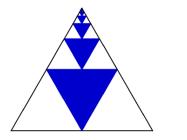
Another Experiment

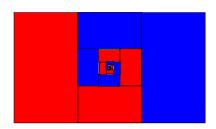
1. Let $f(x) = 1 + \frac{1}{x}$. What is f(1)? f(f(1))? f(f(f(1)))?

In other words, we repeat the operations "take the reciprocal and add one." Find the pattern; what is the result after any number of repetitions?



Folding Triangles


5. Make any fold at the left-hand side of your strip. Next, fold the bottom edge up to meet your crease; Next, fold the top edge down to meet your crease; Next, fold the bottom edge up to meet your crease; Next, fold the top edge down to meet your crease. Repeat until your creases fill the strip.


What do you notice?

Explore a shortcut: turn the strip over so that the bottom edge is repeatedly folded to the crease.

	13		
21	3 2 3 111 8 5		

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64