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Pell’s Equation
Berkeley Math Circle
October 30, 2012

. Find all integers n such that n is simultaneously a triangular number and a square number.
. Find all Pythagorean triples (a, b, ¢) with a® 4+ b = ¢? such that b — a = 1.

. Find all pairs in positive integers m, n such that

142+ ---4m=m+1)+(m+2)+---+n.

Find all triangular numbers that differ by one from a square number.
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Basic Properties of Pell’s equation and Quadratic Fields

. Find all positive integers a, b such that

Show that the equation 2 — dy? = —1 has no solutions for d = 3 or 8.

. Let d be a fixed positive non-square integer. Show that if there is a solution to 2 — dy? = 1, there are

infintely many. Similarly, if there is a solution to 22 — dy? = —1, there are infinitely many.

. Let d be a non-square integer. If a, b € Q, we can consider numbers of the form a + bv/d. Show that

ifa,b,a’,b' € Qand a + bvd =a' + b//d, thena =a’ and b= 1.
Show that any polynomial with rational coefficients satisfied by «v is also satisfied by its conjugate /.

Dirichelet’s Theorem. Let o be an irrational number. We can approximate « by rational numbers.
Show that there are infinitely many rational numbers % such that
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Hint: Use the pigeon-hole principle on numbers of the form ya for 0 <y < n.

The Continued Fraction Method
How can you tell when one continued fraction is larger than another?

Show that the successive convergents of a number « are alternately smaller than and larger than «
(unless « is rational, in which case the last convergent equals «).

Main Theorem of Continued Fractions. Suppose o = (ap, a1, az, ... ). Let p, /gy be a the n-th partial

convergent. Show that

(a0, a1, az a x>:m
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Show that p,41¢n — Pngn+1 = (—1)™.
Problems
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Find all solutions to 2> — dy? = +1 for = 2,3, 5,6, 7.

Show that a right triangle with one angle 7 /3 can be well-approximated by right triangles with rational
side lengths.

The next five problems characterize those numbers with eventually periodic continued fraction expan-

sion.

We are interested in continued fractions that are purely periodic. Suppose that o = (ag, a1, ..., an)
and 8 = (ay, @n_1,.-.,ag). Then show that o/ = —1.

Show that any purely periodic continued fraction is a quadratic number o such that o« > 1 and
—1 < o < 0. Call such a number a reduced quadratic irrational.

Show that for any d there are only finitely many P and @ such that P+T\/E is a reduced quadratic

irrational.
If « = (ag,a1,a9,...,an, any1) show that if « is a reduced quadratic irrational, then so is o, 41.

For any quadratic irrational « define o; by o = (ag, a1, ag,. .., a;—1, ;). Show that «; is eventually
a reduced quadratic irrational. This is the point at which the continued fraction expansion becomes
periodic. Thus any quadratic irrational number has an eventually periodic continued fraction expan-
sion.

Challenges

Consider the general quadratic Diophantine equation
Az? + Bxy+C+ Dz + Ey+ F = 0.
Show that the solution of this equation reduces to Pell’s equation and case analysis.
A deep theorem of Roth says that if « is an algebraic irrational number, then for any € > 0 the
inequality
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has only finitely many solutions % In other words, in looking for good approximations of o, we don’t

get much better than what the pigeonhole principle tells us. Use this to show that 23 — 233 = 1 has
only finitely many solutions.

When does ab divide a® + b% + 1? Hint: Analyze the equation a? + b? 4+ 1 = kab for different values
of k.

Subtle questions to ponder
What is the length of the period of the continued fraction expansion of /d?

How do we obtain all solutions to 2> — dy?> = N? (For small N such solutions must come from the
continued fraction expansion of v/d, while for large N the answer relies on algebraic number theory.)

For which d does 22 — dy? = —1 have a solution?



