Putnam Competition 2012, Session A

Evan O'Dorney

January 15, 2013

- 1. Let d_1, d_2, \ldots, d_{12} be real numbers in the open interval (1, 12). Show that there exist distinct indices i, j, k such that d_i, d_j, d_k are the side lengths of an acute triangle.
- 2. Let * be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that x * z = y. (This z may depend on x and y.) Show that if a, b, c are in S and a * c = b * c, then a = b.
- 3. Let $f: [-1,1] \to \mathbb{R}$ be a continuous function such that

(i)
$$f(x) = \frac{2 - x^2}{2} f\left(\frac{x^2}{2 - x^2}\right)$$
 for every x in [-1, 1],

(ii)
$$f(0) = 1$$
, and

(iii) $\lim_{x \to 1^-} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite.

Prove that f is unique, and express f(x) in closed form.

- 4. Let q and r be integers with q > 0, and let A and B be intervals on the real line. Let T be the set of all b + mq where b and m are integers with b in B, and let S be the set of all integers a in A such that ra is in T. Show that if the product of the lengths of A and B is less than q, then S is the intersection of A with some arithmetic progression.
- 5. Let \mathbb{F}_p denote the field of integers modulo a prime p, and let n be a positive integer. Let v be a fixed vector in \mathbb{F}_p^n , let M be an $n \times n$ matrix with entries in \mathbb{F}_p , and define $G : \mathbb{F}_p^n \to \mathbb{F}_p^n$ by G(x) = v + Mx. Let $G^{(k)}$ denote the k-fold composition of G with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs p, n for which there exist v and M such that the p^n vectors $G^{(k)}(0), k = 1, 2, \ldots, p^n$ are distinct.
- 6. Let f(x, y) be a continuous, real-valued function on \mathbb{R}^2 . Suppose that, for every rectangular region R of area 1, the double integral of f(x, y) over R equals 0. Must f(x, y) be identically 0?