
GROUPS IN NUMBER THEORY AND GEOMETRY

VERA SERGANOVA

Euler function.
For every positive integer n let ϕ(n) be the number of positive integers less than n and

relatively prime with n. For instance, ϕ(6) = 2. The function ϕ is called the Euler function.
We use the notation (m,n) for the greatest common divisor of m and n. Also recall that

a ∼= b(modn) if n divides a− b.
1. Fermat–Euler theorem. If (a, n) = 1, then aϕ(n) ∼= 1(modn).
2. If (m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).
3. Use the previous problem to prove Euler’s product formula

ϕ(n) = n
∏

p|n

(1−
1

p
),

here the product is taken over all prime p that divide n.
4. Find ϕ(2013).
5. Consider all complex roots of the equation xn = 1. A root ε is called primitive if every

other n-th root of 1 is a power of ε. Show that the number of primitive roots equals ϕ(n).
6. Another Euler’s formula

∑

d|n

ϕ(d) = n.

7. Let ε be a primitive n-th root of 1. Prove that

ϕ(n) =
n

∑

k=1

(k, n)εk.

That, in particular, implies the formula

ϕ(n) =
n

∑

k=1

(k, n) cos
2πk

n
.

8. If ϕ(n) is a power of 2 then n = 2kp1 . . . ps, where p1, . . . , ps are distinct Fermat’s
primes (odd primes of the form 2a + 1).
9. If 2a + 1 is prime then a is a power of 2. Find first few Fermat’s primes.
10. If 2a − 1 is prime then a itself is prime.
11. Is 213 − 1 prime?
12. If p is a prime number that divides 2q + 1, then 2q divides p− 1.
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13. A function f(n) defined on the set of positive integers is called multiplicative if
f(nm) = f(n)f(m) for relatively prime m and n. Show that if f(n) is multiplicative, then

g(n) =
∑

d|n

f(d)

is also multiplicative.
14. The Moebius function µ(n) is defined uniquely by the properties µ(1) = 1 and for all

n > 1
∑

d|n

µ(d) = 0.

Check that µ is multiplicative and find the formula for µ(n) in terms of prime factorization
of n.
15. If f(n) and g(n) are related as in Problem 12, then

f(n) =
∑

d|n

µ(d)g
(n

d

)

.

16. MacMahon’s formula. Suppose you have beads of r colors. Let N(n, r) denote the
number of necklaces one can make from those beads with total number of beads equal to n.
(Two necklaces are the same if one can cut each in one place to obtain identical strings.)

N(n, r) =
1

n

∑

d|n

ϕ(d)r
n

d .

Groups.
A set G with operation of multiplication is called a group if the following three conditions

hold

(1) a(bc) = (ab)c for any a, b, c in G;
(2) there is an element 1 such that 1a = a1 = a for any a in G;
(3) For every a in G there exists b such that ab = ba = 1.

A group is called Abelian if the multiplication is commutative, i.e. ab = ba for all a, b in
G.
If a group G is finite we denote by |G| the number of elements in G.
17. Check that the following are groups
(a) The set Cn of all complex roots of xn = 1 with operation of multiplication.
(b) The set Sn of all permutations of {1, . . . , n} with operation (ss′)(i) = s(s′(i)).
(c) The set of rigid motions (transformations which preserve distances) of the plane with

operation of composition.
Which of the above groups are Abelian?
18. A subset H of G which is a group with the same operation of multiplication is called

a subgroup. Find all subgroups of Cn.
19. Lagrange’s theorem. If H is a subgroup of a finite group G, then |H| divides |G|.

The number |G|
|H| is called the index of H.

20. The order of an element g is the minimal positive integer n such that gn = 1. In a
finite group G the order of an element divides |G|.
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21. Let s(m) be the number of elements of order m in Cn. Prove that s(m) = ϕ(m).
22. Every permutation group Sn has a subgroup An of index 2. It is called the alternating

group. One can define An as follows.
(a) A transposition is a permutation that exchanges two numbers and does not move all

others. Every permutation is a product of transpositions.
(b) For any permutation s define the number of inversions l(s) as the number of pairs i < j

such that s(i) > s(j). Check that for any permutation s and any transposition t, l(st)− l(s)
is odd.
(c) Let t1 . . . tk = t′1 . . . t

′
l for some transpositions t1, . . . , tk, t

′
1, . . . , t

′
l. Show that k − l is

even.
(d) Let An be the set of all even permutations in Sn. Then An is a subgroup of Sn of

index 2.
Groups in geometry.
23. Let T denote the group of rigid motions of the plane and G be a finite subgroup of

T . Show that G has a fixed point on the plane.
24. The dihedral group Dn is the subgroup of all rigid motions which preserve a regular

n-gon. Find the number of elements in Dn and check that Cn is a subgroup of Dn (here we
thaink about C as a plane).
In order to say formally that two groups are the same we need the notion of isomorphism.

Isomorphism is a bijective map F : G → G′ that preserves multiplication, i.e. F (ab) =
F (a)F (b). If such F exists we say that G and G′ are isomorphic (essentially the same).
25. Prove that D3 is isomorphic to S3.
26. Prove that any finite subgroup of T is isomorphic to Cn or Dn.
27. The group of rotations SO(3) of the (three dimensional) space is by definition the

group of rigid motions which preserve orientation and fix the origin. Show that every element
g $= 1 of SO(3) is a rotation about some line passing through the origin.
28. Show that the subgroup of all elements in SO(3) which preserve a regular tetrahedron

is isomorphic to A4.
29. Show that the group of rotations of a cube is isomorphic to S4.
30. Show that the group of rotations of a dodecahedron is isomorphic to A5.
31. Any finite subgroup of SO(3) is isomorphic to Cn, Dn, A4, S4 or A5.


