
Berkeley Math Circle
Monthly Contest 5 – Solutions

1. Calculate, with proof, the last digit of

33
33

3

.

Remark. Note that this means 3ˆ(3ˆ(3ˆ(3ˆ3))), not (((3ˆ3)ˆ3)ˆ3)ˆ3.
Solution. When 3 is raised to the successive powers 1, 2, 3, 4, . . . , the units digits are 3, 9, 7, 1, . . .. From then on, since the
digit 1 has been reached, the units digits will repeat in this cycle of four elements. So it is necessary to find the remainder when

n4 = 33
33

3

.

is divided by 4.

When powers of 3 are divided by 4, the remainders are 3, 1, . . .. Here the number 1 appears after two steps, and the remainders
therefore repeat in a two-element cycle. So it is necessary to find the remainder when

n3 = 33
3

is divided by 2.

But n3 is clearly odd, so n4 has a remainder of 3 when divided by 4 and the original number n5 has a last digit of 7.

2. Prove that any triangle can be dissected into five isosceles triangles. (The pieces must not intersect except at their boundaries,
and they must cover the given triangle.)
Solution. We present one of many possible solutions.

First, draw the height to the longest side (or one of the longest sides), as shown in Figure 1. This height will always lie inside
the triangle and will divide it into two right triangles. We will cut one of these right triangles into two isosceles pieces and the
other into three.

For the former construction, we can simply join the midpoint of the hypotenuse to the opposite vertex, as shown in Figure
2. The two resulting triangles are isosceles by the familiar theorem that the midpoint of the hypotenuse of a right triangle is
equidistant from the three vertices.

We now turn to the problem of cutting a right triangle XY Z into three isosceles triangles. If the given triangle is not isosceles,
the perpendicular bisector of the hypotenuse intersects the longer leg, labeled Y Z in Figure 3, at a point W . Drawing XW
cuts the triangle into an isosceles triangle XWY and a right triangle XWZ; the latter can be chopped up into two isosceles
triangles by the preceding technique. If instead the given right triangle is isosceles, it can easily be divided into three right
isosceles triangles by the method shown in Figure 4.
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3. Alice and Bob play the following game on the whiteboard. First, Alice writes an odd number in binary on the board. Then,
beginning with Bob, the players take turns modifying the number in one of two ways: subtracting 1 from it (preserving the
binary notation), or erasing its last digit. When the whiteboard is blank, the last player to have played wins. Which player has
a winning strategy?
Solution. Bob can win using the following strategy: Play so as to leave an empty whiteboard or a number with an odd number
of terminal zeros (preceded by a 1). We claim that Bob can fulfill this requirement at every move.

On his first move, or indeed any move in which Alice leaves an odd number on the board, it is easy to see how the requirement
can be fulfilled. Unless the number on the board is 1 (in which case Bob wins instantly), it ends in a 1 followed by either an
even or an odd number of zeros; in these two cases Bob should subtract one and erase the 1 respectively.

If Alice leaves an even number on the board, it must be by erasing a final 0 from a number left by Bob. Bob can then erase
another zero, and the number of terminal zeros will remain odd.
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4. Let a ≤ b ≤ c ≤ d be real numbers such that

a+ b+ c+ d = 0 and
1

a
+

1

b
+

1

c
+

1

d
= 0.

Prove that a+ d = 0.
Solution 1. Let us rearrange the first equation to read

a+ b = −(c+ d) (1)

and the second to give

1

a
+

1

b
= −1

c
− 1

d
a+ b

ab
= −c+ d

cd
(2)

If a+ b 6= 0, then we can divide (1) by (2) to yield ab = cd. So we conclude that

a+ b = 0 or ab = cd.

In exactly the same manner, we derive that

a+ c = 0 or ac = bd

and

a+ d = 0 or ad = bc (this equation will not be needed).

For the sake of contradiction, we are assuming that a+ d 6= 0. Suppose that a+ c = 0 holds; since a+ b+ c+ d = 0, we get
b+ d = 0, whereas we know a ≤ b and c ≤ d. We conclude that a = b and c = d, whence a+ d = a+ c = 0. Thus a+ c 6= 0,
and for similar reasons a+ b 6= 0.

Multiplying together the equations ab = cd and ac = bd and canceling the nonzero (why?) factor bc gives a2 = d2. So either
a = −d, which is what we assumed impossible, or a = d, which yields the absurdity a = b = c = d = 0.
Solution 2. Consider the polynomial

f(x) = (x− a)(x− b)(x− c)(x− d)
with roots a, b, c, d. The cubic coefficient of f is −(a+ b+ c+ d) = 0; the linear coefficient is

−(abc+ abd+ acd+ bcd) = −abcd
(
1

a
+

1

b
+

1

c
+

1

d

)
= 0.

Consequently f has the form f(x) = x4 + px2 + q, and there are complex numbers u and v such that

f(x) = (x2)2 + px2 + q = (x2 − u)(x2 − v) = (x+
√
u)(x−

√
u)(x−

√
v)(x+

√
v).

Since f has only real roots, u and v must be real and nonnegative. WLOG u ≤ v; then −
√
v ≤ −

√
u ≤
√
u ≤
√
v and we can

identify the two factorizations of f :

a = −
√
v, b = −

√
u, c =

√
u, d =

√
v.

Hence a+ d = 0.

5. Let ω be a circle with diameter AB. A circle γ, whose center C lies on ω, is tangent to AB at D and cuts ω at E and F . Prove
that triangles CEF and DEF have the same area.
Solution. Let segments CD and EF intersect at M . Extend CD to meet γ at G and ω at H , noting that GC = CD = DH .
By Power of a Point,

MG ·MD =ME ·MF =MC ·MH

(CG+MC) ·MD =MC · (MD +DH)

CG ·MD =MC ·DH
MD =MC.

So M is the midpoint of CD. Drop the perpendiculars CX and DY to EF . Triangles MCX and MDY are congruent by
AAS, so the heights CX,DY are equal and the triangles CEF and DEF have the same area.
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6. Find all functions f : R→ R such that

f(xy) + f(x+ y) = f(x)f(y) + f(x) + f(y). (3)

Solution. The answers are f(x) = 0 and f(x) = x. It is easy to check that both are valid.

Plugging (0, 0) into (3) immediately yields f(0) = 0. Plugging in y = 1 yields the relation

f(x+ 1) = f(1)[f(x) + 1]. (4)

If f(1) = 0, then we conclude that f is identically 0. So we assume that f(1) = t 6= 0, so (4) uniquely determines f(x + 1)
given f(x) or vice versa. In this way we obtain the values

f(0) = 0, f(1) = t, f(2) = t2 + t, f(−1) = −1, f(−2) = −1− 1

t
.

Plugging the number pair (2,−1) into (3) yields an equation in t that simplifies to t2 = 1, i.e. t = 1 or t = −1.

The case t = −1 (which incidentally is tenable if f were defined only on the integers) can be disposed of in an ad hoc way.
Plugging (−1/2,−1) into (3) yields f(−1/2) = −1/2; two more applications of (4) give us f(3/2) = −1/2. It is now a
simple matter to insert the number pair (−1/2, 2) into (3) and obtain the contradiction −3/2 = −1/2, implying that the case
t = −1 is impossible.

Therefore we have t = 1, and (4) simplifies to
f(x+ 1) = f(x) + 1. (5)

By induction, f(x) = x for all x ∈ Z. Moreover, we claim that f(x) = x for all x ∈ Q. Let x = p/q with p ∈ Z, q ∈ N.
Plugging (p/q, q) into (3) gives

f(p) + f

(
p

q
+ q

)
= f

(
p

q

)
f(q) + f

(
p

q

)
+ f(q)

p+ f

(
p

q
+ q

)
= qf

(
p

q

)
+ f

(
p

q

)
+ q.

We can use (5) to replace f(pq + q) by f(pq ) + q, and then the equation is readily solved for f(pq ) =
p
q .

Now we know that f is the identity on the rationals, and we would like to pass from the rationals to the reals using density. For
this we need certain bounds. We first plug (x,−1) into (3) and obtain

f(−x) + f(x− 1) = f(−1)
f(−x) + f(x)− 1 = −1

f(−x) = −f(x),

that is, f is an odd function. Now we plug in (x,−x) and get

f(−x2) = f(−x)f(x) + f(−x) + f(x) = −f(x)2.

Thus f applied to a nonpositive number always yields a nonpositive result, and consequently f of a nonnegative number always
yields a nonnegative result.

For our final step, we assume that y is a rational number in the interval [−1, 0] and x is any real number. Then (3) yields

f(x+ y)− f(y) = f(x)f(y)− f(x)− f(xy)
f(x+ y)− y = (y + 1)f(x)− f(xy).

Our choice of y ensures that both terms on the right-hand side have the same sign as x (except that they may be zero). Let us
keep x + y = r, where r ∈ [−1, 0] is a fixed irrational number, and vary y. We observe that, for each y ∈ Q ∩ [−1, 0], the
differences f(r)− y and r − y have the same sign. This can only happen if f(r) = r.

Thus f is the identity on [−1, 0], and by (5), it is the identity everywhere.
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7. Let a1 = 1, a2 = 2, and for n ≥ 3, let an be the smallest positive integer such that an 6= ai for i < n and gcd(an, an−1) > 1.
Prove that every positive integer appears as some ai.

Solution. Our solution will proceed in three steps.

Step 1. We show that there is a prime p such that infinitely many of the terms ai are divisible by p.

Proof. Suppose that such a prime p does not exist. In particular, taking p = 2, we find that there is an N1 such that for all
i ≥ N1, ai is odd. Now let p1 be the largest prime dividing any of the numbers a1, . . . , aN1 , and choose N2 > N1 such that
for i ≥ N2, all prime factors of ai exceed p1. The terms aN2 and aN2+1 have a common prime divisor p2 > p1. Note that the
term 2p2 never appears in the sequence, since all the even terms have prime factors bounded by p1. Therefore p2 never appears
in the sequence, since if an = p2 for some n, we would have an+1 = 2p2. Thus aN2+1 ≥ 3p2, which is impossible, since
p2 < aN2+1 has not appeared at stage N2 + 1 and shares a factor with aN2

.

Step 2. We show that every multiple of p is in the sequence {ai}.

Proof. Suppose that p, 2p, . . . , (k− 1)p are in the sequence but kp is not (k ≥ 1). Choose N such that all positive integers less
than kp, if they appear in the sequence at all, are among the terms a1, . . . , aN . Then, using Step 1, choose n ≥ N such that
p|an. What can an+1 be? By hypothesis an+1 ≥ kp; we note that kp is not relatively prime to an and not equal to any of the
terms a1, . . . , an. So an+1 = kp, a contradiction.

Step 3. We show that every positive integer is in the sequence {ai}.

Proof. Suppose that 1, 2, . . . , k− 1 are in the sequence but k is not (k ≥ 3). Choose N such that 1, 2, . . . , k− 1 appear among
the terms a1, a2, . . . , aN . By Step 2, there is an n ≥ N such that an is divisible by kp, hence by k. Using an argument like
that of the preceding step, we get an+1 = k, a contradiction.
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