
Berkeley Math Circle
Monthly Contest 4 – Solutions

1. Prove that every power of 3, from 27 onward, has an even tens digit.

Solution. By repeatedly multiplying by 3, we see that the units digits of powers of 3 are either 3, 9, 7, or 1. Suppose that N is
a power of 3 with an even tens digit; we will prove that the tens digit of 3N is also even, from which it will follow inductively
that every power of 3 from 27 onward has an even tens digit.

If N ends in 1 or 3, then when N is tripled, there will be no carrying from the units place to the tens place. Then the tens digit
of 3N will arise from tripling the tens digit of N and hence will be even.

If N ends in 7 or 9, then there will be a carry of 2 from the units place to the tens place. The tens digit of 3N will arise from
tripling the tens digit of N and hence will still be even.

2. A positive integer is called oddly even if the sum of its digits is even. Find the sum of the first 2013 oddly even numbers.

Solution. For convenience, we declare 0 to be oddly even (its digit sum is of course 0), and we sum the first 2014 oddly even
nonnegative integers.

Let us look at the oddly even numbers in a given hundred, that is, in the range 100n to 100n + 99 where n ≥ 0 is an integer.
For each tens digit, there are five possibilities for the units digit, and for each units digit, there are five possibilities for the tens
digit. In particular, there are exactly 50 oddly even numbers in this range. When we sum their units digits, we get

5 · 0 + 5 · 1 + · · ·+ 5 · 9

which is exactly half the sum of the units digits of all integers in the range [100n, 100n + 99]. The same can be said for the
tens digits and all preceding digits, so the sum of all oddly even numbers in the range [100n, 100n+ 99] is half the sum of all
the integers in this range.

We deduce that the interval [0, 3999] has 2000 oddly even numbers and their sum is

1

2
(0 + 1 + · · ·+ 3999) =

1

2
· 3999 · 4000

2
= 3999 · 1000 = 3999000.

We compute the next fourteen oddly even numbers:

4000, 4002, 4004, 4006, 4008, 4011, 4013, 4015, 4017, 4019, 4020, 4022, 4024, 4026.

Their sum can be computed by hand using various expendients, for instance:

14 · 4000 + (0 + 2 + 4 + 6 + 8 + 11 + 13 + 15 + 17 + 19 + 20 + 22 + 24 + 26)

= 14 · 4000 + [(2 + 8) + (4 + 6) + (11 + 19) + (13 + 17) + (24 + 26) + 20 + 15 + 22]

= 14 · 4000 + [10 + 10 + 30 + 30 + 20 + 50 + 37] = 56000 + 187 = 56187.

So the total sum of the first 2013 oddly even numbers is

3999000 + 56187 = 4055187.
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3. The expression
(1 1 1 · · · 1)

is written on a board, with 2013 ones in between the outer parentheses. Between each pair of consecutive ones you may write
either “+” or “)(” (you cannot leave the space blank). What is the maximum possible value of the resulting expression?

Solution. The answer is 3671, formed by dividing the ones into groups of three as the answer suggests.

It should be obvious that a maximum value exists, since there are only finitely many ways to place the pluses and parentheses
and one (or more) of them must give the largest value.

If there is a factor greater than or equal to 5, we can prove that the arrangement is not optimal by splitting off two 1’s, e.g.
changing

(1 + 1 + 1 + 1 + 1) to(1 + 1)(1 + 1 + 1).

This is tantamount to changing a factor of n+ 2 to 2n for n ≥ 3, which increases the value of the expression.

If we have a factor containing only one 1, then we can merge it with any other factor n; this changes n to n+ 1 and therefore
also increases the value of the expression.

Therefore we need only consider expressions in which every factor is 2, 3, or 4. Because 4 can be broken up into 2 · 2 without
changing the value of the expression, we will restrict our attention to expressions made up of 2’s and 3’s.

Now if there are at least three factors of 2, we can change them to two factors of 3 without altering the total number of 1’s in
the expression. This replaces a factor of 8 by a factor of 9, thus increasing the expression.

So the optimal way of forming the expression consists of zero, one, or two 2’s and some undetermined number of 3’s. Given
that the total number of ones is 2013, it is clear that there must be no twos and 671 threes, implying that 3671 is the maximum
value.

4. Let AB and CD be two nonperpendicular diameters of a circle centered at O, and let Q be the reflection of D about AB. The
tangent at B meets AC at P , and DP meets the circle again at E. Prove that lines AE, BP , and CQ are concurrent.

Solution.
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Z
Z
Z
Z
Z
Z

P

A

B

C

D
E

X

Q -

Let X be the intersection of CQ and BP . We first note that CQ ‖ AB since

∠CQA = ∠CBA = ∠BAD = ∠BAQ.

Note that4CPX ∼ 4CDA since the angles at X and A are right and

∠CPX = 90− ∠CAB = ∠CBA = ∠BDA.

So4CPX ∼ 4CDA; rearranging the known facts

CP

CX
=
CD

CA
and ∠PCX = ∠DCA

yields4CPD ∼ 4CXA. In particular, ∠CAX = ∠CDP = ∠CAE, so A, E, X are collinear, as desired.
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5. Let P (x) be a polynomial such that for all integers x ≥ 1,

P (x) =

x∑
n=1

n2012.

(a) Find P (−2).
(b) Find P (1/2).

Solution. (a) Consider the relation
P (x) = P (x− 1) + x2012. (1)

If x is an integer greater than 1, then (1) clearly holds. Therefore (1) holds for all real x (two polynomials cannot have
infinitely many common values unless they are the same). We can therefore use the recurrence P (x− 1) = P (x)−x2012
to compute

P (0) = P (1)− 12012 = 1− 1 = 0

P (−1) = P (0)− 02012 = 0− 0 = 0

P (−2) = P (−1)− (−1)2012 = 0− 1 = −1.

(b) Consider the relation
P (−1− x) = −P (x). (2)

The x = 0 case of this follows easily from the computations performed in part (a). Given this, we can easily prove (2) by
induction for all nonnegative integers x using (1):

P (−2− x) = P (−1− x)− (−1− x)2012

= −P (x)− (x+ 1)2012

= −P (x+ 1).

Plugging x = −1/2 into (2) yields P (−1/2) = 0, so by (1),

P (1/2) = P (−1/2) +
(
1

2

)2012

=
1

22012
.

6. How many functions f : Z→ R satisfy the following three properties?

(a) f(1) = 1;

(b) For all m,n ∈ Z, f(m)2 − f(n)2 = f(m+ n)f(m− n);
(c) For all n ∈ Z, f(n) = f(n+ 2013).

Solution. By plugging m = n = 0 into (b) we easily get f(0) = 0. For any u ∈ Z, we have

f(u+ 1)2 − f(u− 1)2 = f(2u)f(2)

f(u+ 1)2 − f(u)2 = f(2u+ 1)f(1) = f(2u+ 1)

f(u)2 − f(u− 1)2 = f(2u− 1)f(1) = f(2u− 1)

whence

f(2u)f(2) = f(2u+ 1) + f(2u− 1).

We would like to conclude that
f(n+ 1) + f(n− 1) = f(2)f(n)

for all n ∈ Z. This is indubitable if n is even; otherwise we may use (c) and the fact that n+ 2013 is even.

For any given value of t = f(2), there is a unique function f satisfying the recursive definition

f(1) = 1, f(2) = t, f(n+ 1) + f(n− 1) = tf(n). (3)
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If t 6= ±2, this solution is given by

f(n) =
λn1 − λn2
λ1 − λ2

where λ1,2 ∈ C are the roots of λ2 − tλ+ 1 = 0. (4)

Those familiar with the theory of linear recurrences will know a heuristic derivation of this formula. For our purposes it suffices
to note that this function f does indeed satisfy definition (3) and in fact the condition (b) as well; thus the problem is to find
out how many values of t cause condition (c) to hold.

If t = ±2, the solution (4) is invalid due to the fact that λ1 = λ2. In these cases the corresponding functions f satisfying (3)
are f(n) = n and f(n) = (−1)n+1n, both of which fail condition (c) and hence can be discarded.

From the condition f(2013) = f(0) = 0, we derive that λ20131 = λ20132 = λ−2013
1 , so λ40261 = 1. We must have λ2013 = 1 or

λ2013 = −1. If the latter holds, then from f(2014) = f(1) we get

λ20141 − λ20142 = λ1 − λ2
λ1 · λ20131 − λ2 · λ20132 = λ1 − λ2

−λ1 + λ2 = λ1 − λ2
λ1 = λ2,

a contradiction. So λ1, and hence its reciprocal λ2, are 2013th roots of unity, a condition that is clearly sufficient to imply (c).

The trivial root λ1 = λ2 = 1 must be discarded. The remaining roots come in 1006 conjugate pairs yielding 1006 distinct real
values of t. We conclude that there are 1006 such functions f .

7. Find all composite positive integers n such that all the divisors of n can be written in the form ar+1, where a and r are integers
with a ≥ 0 and r ≥ 2.

Solution. The only such number is n = 10. It is easy to see that n = 10 indeed satisfies the conditions. Call n “good” if every
divisor of n has the form ar + 1, a ≥ 0, r ≥ 2 (a good n may be prime or composite).

First, it is easy to check that 4 is not good, and so 4 does not divide any good number.

Second, we show that a good integer is one more than a perfect square. Write n = ar + 1 with r maximal. If r is odd, a + 1
divides n, and so a+ 1 = ar11 + 1. Hence a = ar11 and n = arr1+1

1 , violating the maximality assumption of r. Thus r must be
even. We conclude that n = x2 + 1 for some positive integer x.

Third, we show that the product of two odd primes are not good. Assume on the contrary that pq is good, where p ≤ q are odd
primes. Then both p and q are good. We write p = s2+1, q = t2+1, and pq = u2+1 (so s ≤ t < u). Then s2t2+s2+t2 = u2

or
s2q = s2(t2 + 1) = (u− t)(u+ t) : (5)

Since q > s2 and q is prime, q must divide u + t. Note that both t and u are odd, so u + t is even. Hence 2q = 2(t2 + 1)
divides u + t. It follows that u + t ≥ 2(t2 + 1) = 2q, and so u − t ≥ 2t2 + 2 − 2t = t2 + 1 + (t − 1)2 > s2, contradicting
(5). Hence our assumption was wrong, and so no good number is divisible by a product of two odd primes.

It follows that any n satisfying the conditions of the problem is of the form n = 2p, where p is an odd prime. We can write
n = x2 + 1 and p = y2 + 1. Hence x2 + 1 = 2y2 + 2 or p = y2 + 1 = x2 − y2 = (x − y)(x + y). This is true only if
x = y + 1, implying that y = 2, p = 5, and n = 10.
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