INVERSION IN THE PLANE BERKELEY MATH CIRCLE

ZVEZDELINA STANKOVA MILLS COLLEGE/UC BERKELEY MARCH 13 2012

DEFINITION OF INVERSION IN THE PLANE

Definition 1. Let k(O,r) be a circle with center O and radius r. Consider a function on the plane, $I: \mathbb{R}^2 \to \mathbb{R}^2$, sending a point $X \not\equiv O$ to the point on the half line OX^{\to} , X_1 , defined by

$$OX \cdot OX_1 = r^2$$
.

Such a function I is called an inversion of the plane with center O and radius r (write I(O, r).)

It is immediate that I is not defined at p. O. But if we compactify \mathbb{R}^2 to a sphere by adding one extra point O_{∞} , we could define $I(O) = O_{\infty}$ and $I(O_{\infty}) = O$.

An inversion of the plane can be equivalently described as follows. If $X \in k$, then I(X) = X. If X lies outside k, draw a tangent from X to k and let X_2 be the point of tangency. Drop a perpendicular X_2X_1 towards the segment OX with $X_1 \in OX$, and set $I(X) = X_1$. The case when X is inside k, $X \not\equiv O$, is treated in a reverse manner: erect a perpendicular XX_2 to OX, with $X_2 \in k$, draw the tangent to k at point X_2 and let X_1 be the intersection of this tangent with the line OX; we set $I(X) = X_1$.

Properties of Inversion

Some of the basic properties of a plane inversion I(O, r) are summarized below:

- I^2 is the identity on the plane.
- If $A \not\equiv B$, and $I(A) = A_1, I(B) = B_1$, then $\triangle OAB \sim \triangle OB_1A_1$. Consequently,

$$A_1 B_1 = \frac{AB \cdot r^2}{OA \cdot OB}.$$

- If l is a line with $O \in l$, then I(l) = l.
- If l is a line with $O \notin l$, then I(l) is a circle k_1 with diameter OM_1 , where $M_1 = I(M)$ for the orthogonal projection M of O onto l.
 - If k_1 is a circle through O, then $I(k_1)$ is a line l: reverse the previous construction.
- If $k_1(O_1, r_1)$ is a circle not passing through O, then $I(k_1)$ is a circle k_2 defined as follows: let A and B be the points of intersection of the line OO_1 with k_1 , and let $A_1 = I(A)$ and $B_1 = I(B)$; then k_2 is the circle with diameter A_1B_1 . Note that the center O_1 of k_1 does not map to the center O_2 of k_2 .

Note that two circles are perpendicular if their tangents at a point of intersection are perpendicular; following the same rule, a line and a circle will be perpendicular if the line passes through the center of the circle. In general, the angle between a line and a circle is the angle between the line and the tangent to the circle at a point of intersection with the line.

• Inversion preserves angles between figures: let F_1 and F_2 be two figures (lines, circles); then

$$\angle(F_1, F_2) = \angle(I(F_1), I(F_2)).$$

PROBLEMS

- (1) Given a point A and two circles k_1 and k_2 , construct a third circle k_3 so that k_3 passes through A and is tangent to k_1 and k_2 .
- (2) Given two points A and B and a circle k_1 , construct another circle k_2 so that k_2 passes through A and B and is tangent to k_1 .

- (3) Given circles k_1, k_2 and k_3 , construct another circle k which tangent to all three of them.
- (4) Let k be a circle, and let A and B be points on k. Let s and q be any two circles tangent to k at A and B, respectively, and tangent to each other at M. Find the set traversed by the point M as s and q move in the plane and still satisfy the above conditions.
- (5) Circles k_1, k_2, k_3 and k_4 are positioned in such a way that k_1 is tangent to k_2 at point A, k_2 is tangent to k_3 at point B, k_3 is tangent to k_4 at point C, and k_4 is tangent to k_1 at point D. Show that A, B, C and D are either collinear or concyclic.
- (6) Circles k_1, k_2, k_3 and k_4 intersect cyclicly pairwise in points $\{A_1, A_2\}$, $\{B_1, B_2\}$, $\{C_1, C_2\}$, and $\{D_1, D_2\}$. $\{k_1 \text{ and } k_2 \text{ intersect in } A_1 \text{ and } A_2, k_2 \text{ and } k_3 \text{ intersect in } B_1 \text{ and } B_2, \text{ etc.}\}$
 - (a) Prove that if A_1, B_1, C_1, D_1 are collinear (concyclic), then A_2, B_2, C_2, D_2 are also collinear (concyclic).
 - (b) Prove that if A_1, A_2, C_1, C_2 are concyclic, then B_1, B_2, D_1, D_2 are also concyclic.
- (7) (Ptolemy's Theorem) Let ABCD be inscribed in a circle k. Prove that the sum of the products of the opposite sides equals the product of the diagonals of ABCD:

$$AB \cdot DC + AD \cdot BC = AC \cdot BD$$
.

Further, prove that for any four points A, B, C, D: $AB \cdot DC + AD \cdot BC \ge AC \cdot BD$. When is equality achieved?

- (8) Let k_1 and k_2 be two circles, and let P be a point. Construct a circle k_0 through P so that $\angle(k_1, k_0) = \alpha$ and $\angle(k_1, k_0) = \beta$ for some given angles $\alpha, \beta \in [0, \pi)$.
- (9) Given three angles $\alpha_1, \alpha_2, \alpha_3 \in [0, \pi)$ and three circles k_1, k_2, k_3 , two of which do not intersect, construct a fourth circle k so that $\angle(k, k_i) = \alpha_i$ for i = 1, 2, 3.
- (10) Construct a circle k^* so that it goes through a given point P, touches a given line l, and intersects a given circle k at a right angle.
- (11) Construct a circle k which goes through a point P, and intersects given circles k_1 and k_2 at angles 45° and 60° , respectively.
- (12) Let ABCD and $A_1B_1C_1D_1$ be two squares oriented in the same direction. Prove that AA_1 , BB_1 and CC_1 are concurrent if $D \equiv D_1$.
- (13) Let ABCD be a quadrilateral, and let k_1, k_2 , and k_3 be the circles circumscribed around $\triangle DAC$, $\triangle DCB$, and $\triangle DBA$, respectively. Prove that if $AB \cdot CD = AD \cdot BC$, then k_2 and k_3 intersect k_1 at the same angle.
- (14) In the quadrilateral ABCD, set $\angle A + \angle C = \beta$.
 - (a) If $\beta = 90^{\circ}$, prove that that $(AB \cdot CD)^2 + (BC \cdot AD)^2 = (AC \cdot BD)^2$.
 - (b) If $\beta = 60^{\circ}$, prove that $(AB \cdot CD)^2 + (BC \cdot AD)^2 = (AC \cdot BD)^2 + AB \cdot BC \cdot CD \cdot DA$.
- (15) Let k_1 and k_2 be two circles intersecting at A and B. Let t_1 and t_2 be the tangents to k_1 and k_2 at point A, and let $t_1 \cap k_2 = \{A, C\}$, $t_2 \cap k_1 = \{A, D\}$. If $E \in AB^{\to}$ such that AE = 2AB, prove that ACED is concyclic.
- (16) Let OL be the inner bisector of $\angle POQ$. A circle k passes through O and $k \cap OP^{\rightarrow} = \{A\}$, $k \cap OQ^{\rightarrow} = \{B\}$, $k \cap OL^{\rightarrow} = \{C\}$. Prove that, as k changes, the following ratio remains constant:

$$\frac{OA + OB}{OC}$$
.

- (17) Let a circle k^* be inside a circle k, $k^* \cap k = \emptyset$. We know that there exists a sequence of circles $k_0, k_1, ..., k_n$ such that k_i touches k, k^* and k_{i-1} for i = 1, 2, ..., n+1 (here $k_{n+1} = k_0$.) Show that, instead of k_1 , one can start with any circle k'_1 tangent to both k and k^* , and still be able to fit a "ring" of n circles as above. What is n is terms of the radii of and the distance between the centers of k and k^* ?
- (18) Circles k_1, k_2, k_3 touch pairwise, and all touch a line l. A fourth circle k touches k_1, k_2, k_3 , so that $k \cap l = \emptyset$. Find the distance from the center of k to l given that radius of k is 1.