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HAVE COLORS – WILL PAINT 
Tatiana Shubin tatiana.shubin@sjsu.edu 

 

 

Imagine that you’re completely and utterly free – you’ve won a long week on a 

vacation island with no homework, no chores, and no bedtime.  You have lots of blank 

paper, an unlimited supply of different colored paints and you decide to paint whatever 

wild pattern comes into your mind – stripes, checks, paisley, bird’s eye, dog’s tooth, 

herringbone, plaid, polka dots, oh my!  Would there be any possible restriction to your 

exploits?  Why should there be any?  For example, here’s an interesting question: 

 

1.   Is it possible to paint every point of a plane with one of three colors so that all three 

colors are used and every line of the plane consists of points of exactly two colors? 

 

 Or how about some others: 

 

2.   Is it possible to color each point of a plane with one of two colors in such a way that 

no two points exactly a unit distance apart are of the same color? What if we use three 

colors instead? Four colors? 

 

 Well, perhaps dealing with the entire plane is too difficult. Let’s look at 

something not as big, say, just one circle. 

 

3.   Is it possible to color each point on a circle either red or blue in such a way that no 

three points of the same color form an isosceles triangle?  What if instead of just two 

colors you can use three different colors?
 
Four colors? 1,000,000 colors? 

 

Some (dis?)similar problems: 

 

A.   A.1  Is it possible to split the natural numbers into two sets A and B such that the 

sum of two distinct elements of A belongs to B and vice-versa? 

 

A.2   Suppose that the set of all natural numbers is split into two sets B and R. We’ll call 

the elements of B “blue”, and the elements of R “red”.  Must there be integers x, y such 

that either all four numbers x, y, x + y, and xy are red, or all four of them are blue? 

 

A.3   Suppose that natural numbers are partitioned into finitely many pieces: 

= nAAA  ...21  

(i.e., every integer is colored by one of n colors). Must there be integers x, y such that all 

four numbers x, y, x + y, and xy are of the same color?
1
 

 

                                                 
1
 This problem was posed by N. Hidman in 1979. It’s still open. 
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B.   B.1   If 5 points lie in a plane so that no 3 points form a straight line, prove that four 

of the points will always form a convex quadrilateral. 

 

B.2   If 9 points lie in a plane so that no 3 points are collinear, prove that 5 of the points 

form a convex pentagon. 

 

B.3   If the number of points that lie in the plane is 221  n  (where 3n ), and no 3 of 

them are collinear, ca one always select n points so that they form a convex n-sided 

polygon?
2 

 

All the problems above belong to the part of mathematics called  

 

Ramsey Theory. 

 

Frank Ramsey, an English mathematician, economist and philosopher, proved his 

famous theorem in 1928. It says that if a number of objects in a set is sufficiently large 

and each pair of objects has one of a number of relations, then there is always a subset 

containing a certain number of objects where each pair has the same relation.  Ramsey 

theory is concerned with finding just how large is sufficient.  

 

To be a little more precise, we can look into a problem of finding Ramsey 

Numbers. A slightly different way to state Ramsey’s theorem is to say that in any 

coloring of the edges of a sufficiently large complete graph, one will find monochromatic 

complete subgraphs. For two colors, Ramsey's theorem states that for any pair of positive 

integers (r,s), there exists a least positive integer R(r,s) such that for any complete graph 

with R(r,s) vertices, whose edges are colored red or blue, there exists either a complete 

subgraph with r vertices which is entirely blue, or a complete subgraph with s vertices 

which is entirely red.  

 

Ramsey numbers are very hard to calculate. Only few Ramsey numbers are 

known so far: 

 

R(3,3) = 6; R(3,4) = 9; R(3,5) = 14; R(3,6) = 18; R(3,7) = 23; 

R(3,8)=28; R(3,9) = 36; R(4,4) = 18; R(4,5) = 25. 

 

It is also known that 49)5,5(43  R , and 165)6,6(102  R , but nobody 

knows these two numbers exactly. In fact, Erdos used to say that if Aliens invade the 

Earth and threaten to obliterate it in a year’s time unless human beings find R(5,5), w e 

could possibly avoid the obliteration by putting the world’s best minds and fastest 

computers to the task. But if the aliens demanded that we find R(6,6) within a year, we 

would have no choice but to launch a pre-emptive attack. 
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 It is known that if there are sufficiently many points than it’s possible to find n points forming a convex 

polygon. It is not known whether or not 
221  n

is a sufficiently large number. This number was 

conjectured by Erdos in 1934. 
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 Let’s go back to problem 3. Let’s cut the circle and straighten it up. If three points 

on the circle formed an isosceles triangle, what would these three points look like on this 

straight line?  

 Let’s consider the following four statements: 

 

I.     If all integers of a number line are colored, each with one of two colors, there must 

be three monochromatic (this means ‘of the same color’) numbers forming an arithmetic 

progression. 

 

II.    If all lattice points
3
 of a plane are colored, each with one of two colors, there must be 

three monochromatic points forming an isosceles right triangle. 

 

III.   If all lattice points of a plane are colored, each with one of three colors, there must 

be three monochromatic points forming an isosceles right triangle. 

 

IV.   If all lattice points of a plane are colored, each with one of two colors, there must be 

four monochromatic points forming a square.  

 

 The proofs of these four statements that we’ve gone through should give you a 

pretty good idea of how the following celebrated theorem can be proved. 

 

Van der Waerden’s Theorem:  For any given positive integers r and k, there is 

some number N such that if the integers {1, 2, ... , N} are colored, each with one of r 

different colors, then there are at least k monochromatic integers forming an arithmetic 

progression. 

 

The least such N is the Van der Waerden Number W(r, k). We have just seen that 

W(2, 3) ≤ 21.  In fact, W(2, 3) = 9.  It’s not too hard to find W(3, 3) = 27.  The current 

record for an upper bound belongs to Timothy Gowers (a Fields medallist); he proved 

that 
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But it is an open problem to find the exact values of W(r, k) for most 

values of r and k, or even to reduce an upper bound (the Gower’s bound is way bigger 

than actual value – check it!).   
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 Points with integer coordinates are called lattice points. 


