
TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS,
AND MAZES TO DISCRETE GEOMETRY

BERKELEY MATH CIRCLE

1. Looking for a number

Consider an 8× 8 checkerboard (like the one used to play chess) and consider 32
dominoes that each may cover two adjacent squares (horizontally or vertically).

Question 1 (***). What is the number N of ways in which you can cover the
checkerboard with the dominoes?

This question is difficult, but we will answer it at the end of the lecture, once we
will have familiarized with tilings. But before we go on

Question 2. Compute the number of domino tilings of a n × n checkerboard for n
small. Try n = 1, 2, 3, 4, 5. Can you do n = 6...?

Question 3. Can you give lower and upper bounds on the number N? Guess an
estimate of the order of N .

2. Other settings

We can tile other regions, replacing the n× n checkerboard by a n×m rectangle,
or another polyomino (connected set of squares). We say that a region is tileable by
dominos if we can cover entirely the region with dominoes, without overlap.

Question 4. Are all polyominoes tileable by dominoes?

Question 5. Can you find necessary conditions that polyominoes have to satisfy in
order to be tileable by dominos?

What if we change the tiles? Try the following questions.

Question 6. Can you tile a 8×8 checkerboard from which a square has been removed
with triminos 1× 3 (horizontal or vertical)?

Question 7 (*). If you answered yes to the previous question, can you tell what
are the only possible squares that can be removed so that the corresponding board is
tileable?
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Figure 1

Figure 2

Now, what about other grids?

Question 8. Can you tile a large hexagon with lozenges?

Consider the following shape, Figure 1.

Question 9. How many possibilities are there?

And this one, Figure 2.

Question 10. How many tilings for Figure 2?

This is an example of how the boundary conditions (shape of the border of the
domain) influence the number of possible tilings.
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3. An exact count

Question 11. What is the number of domino tilings of a 2× n rectangle?

4. Graphs

Recall that a graph G = (V,E) is a set of vertices along with a set of edges that
each link two vertices. A graph is connected if all pair of vertices can be joined by a
path of edges.

A perfect matching is a subset of the edges m ⊂ E such that each vertex is the
end vertex of exactly one edge e ∈ m.

Question 12. Show that a domino tiling of the checkerboard corresponds bijectively
to a perfect matching of a well-chosen graph.

Question 13. Can you find necessary conditions on graphs to have perfect match-
ings?

A graph whose vertices can be colored in black and white such that black and
white alternate is called bipartite.

Question 14. Give a necessary condition on a bipartite graph to have perfect match-
ings.

Question 15. Show that a graph is bipartite iff all its cycles are of even length.

Not all graphs can be drawn in the plane or (equivalently) on a sphere. Those
that can be drawn in the plane (or equivalently on the sphere) are called planar.

Question 16. Can you give an example of a non-planar graph?

Question 17 (*). Can you show that all finite graphs can be drawn in R3?

A tree is a graph without cycle.

Question 18. Show that a tree is a connected graph with exactly as many edges as
the number of vertices minus 1.

A spanning tree of a connected graph is a subgraph which is a tree and connects
all vertices.

Question 19. Can you show that all finite graphs have spanning trees?

5. Euler characteristic

Question 20. Show that for any connected planar graph G = (V,E),

|V | − |E|+ |F | = 2 ,

where F is the set of faces (including the unbounded one).
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Question 21. Use Euler’s formula to prove rigorously that a pentagon with all of
its diagonals is non planar.

A regular polyhedron is a convex glueing of polygons, such that all faces are the
same polygon (with p edges), and at each vertex there is the same number q of
polygons glued. Schläfli symbol: {p, q}. For example the cube or the tetrahedron
are regular polyhedra.

Question 22. Show that there are at most 5 regular polytopes.

Question 23. In fact, there are exactly 5 since you can probably name 5 of them :
the cube, the tetrahedron, ... ?

As you may know, Euler first started off graph theory to solve the problem of the
seven bridges of Königsberg.

Question 24 (*). Have you heard of this problem? Can you solve it?

6. Height function

We are going to associate an integer-valued function (stepped surface) over the
vertices of the squares of a tileable polyomino (for example a 2n× 2n chessboard).

Here is the rule. Start with a 2n× 2n chessboard and a tiling T . We are going to
define a height function hT which is an integer valued function over the vertices of
all squares. Set hT to be 0 at the lower left corner v0. Now follow the rule: for any
vertex v, choose a path from the corner v0 to v following the sides of the dominoes,
and apply the following rule: Look at the square on your right

• if it is black, increase the height by 1,
• if it is white, decrease the height by 1.

If there is no square on your right, look at the one on your left and if it is black,
decrease the height by 1, and if it is white, increase by 1.

Question 25. Show that this height is well-defined, i.e. show that it doesn’t depend
on the choices of paths you make.

Notice that the values of the height function on the boundary of the domain do
not depend on the tiling.

Actually, height functions enable to rephrase the problem of tileability of a poly-
omino in terms of a boundary value problem for a function over the vertices of the
polyomino. There exists a tiling iff there exists a stepped surface (which satisfies
certain constraints) with boundary values given by the shape of the polyomino.

What happens on other shapes?

Question 26. Can you define a height function for lozenge tilings of a hexagon in
the triangular grid?
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7. Temperley’s bijection

We are now going to associate to any tiling of a checkerboard, a spanning tree of
a certain graph.

Temperley introduced the following construction. Start with a (2n+ 1)× (2n+ 1)
chessboard. We suppose that the chessboard has black squares at all its 4 corners.
Remove the upper-right corner. Call it the root. Let G be the subgraph consisting
of the square lattice of black squares at distance 2 appart only and containing the
corners. We are going to define a tree tT on the subgraph G and rooted at the root.
Start at any black square in G and draw a directed edge to the only direction given
by the domino that covers it. Continue until you reach the removed corner. Continue
this procedure until every black square is connected to the root.

Now draw lines between the neighboring squares that remain without crossing the
tree tT . This yields a family of trees all rooted on the exterior face of the chessboard.

Question 27. Show that Temperley’s correspondence is a well-defined bijection be-
tween the set of domino tilings of the checkerboard and the set of trees on G.

What about other shapes?

Question 28 (***). Can you define a spanning tree that encodes all information in
the case of lozenge tilings of a hexagon in the triangular grid?

8. Ordering tilings

Take the hexagon and a lozenge tiling of it.

Question 29. Can you find a way to order the set of all tilings, that is find a way
to compare them, say which out of two is “bigger” than the other one?

9. Permutations and determinant

A permutation over n elements is a bijection of the set {1, · · · , n}, that is a shuffling
of these n elements. We call Sn the set of permutations.

Question 30. Show that any permutation can be written as a product of cycles with
disjoint supports.

For any cycle c, define ε(c) = (−1)|c|−1, where |c| is the length of the cycle. For a
permutation σ =

∏
i ci, define ε(σ) =

∏
i ε(ci) ∈ {−1, 1}. This is called the signature

of the permutation.
Recall that a square matrix of size n is a square array of numbers of size n × n.

Now for any matrix M = (Mi,j), define its determinant to be

detM =
∑
σ∈Sn

ε(σ)
∏
i

Mi,σ(i) .
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Define the Kasteleyn matrix to be a square matrix with rows indexed by black
vertices and columns by white vertices. Define Kb,w = 0 if b is not a neighbor of w,
and i =

√
−1 or 1 according to the fact that bw is horizontal or vertical.

Question 31. Show that detK =
∑

T zT , where the sum is over all possible tilings,
and for any tiling T , we have zT = 1,−1, i, or −i.

Question 32 (*). Can you show that in fact | detK| = |{tilings}| is the number of
tilings?

Now, using some linear algebra, we can compute determinants. We will show in
class how to compute this one.

Question 33 (**). Find the eigenvalues of K. Conclude that N =?.

10. Applications, current research, and open problems

Now enjoy the slides.

10.1. The effect of boundary conditions in the infinite volume limit. The
arctic circle phenomena for domino tilings of the Aztec diamond. See slides.

10.2. Random fractals. We add some randomness in the picture. We consider a
large n × n chessboard, and a uniformly chosen random domino tiling of it. This
yields a random discrete surface hT and a random tree tT . See slides.
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