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1 Introduction

The problem is that we tend to live among the set of puny integers and generally ignore the
vast infinitude of larger ones. How trite and limiting our view!

— P.D. Schumer

It seems that most children at some age get interested in large numbers. “What comes after a thousand?
After a million? After a billion?”, et cetera, are common questions.

Obviously there is no limit; whatever number you name, a larger one can be obtained simply by adding
one. But what is interesting is just how large a number can be expressed in a fairly compact way.

Using the standard arithmetic operations (addition, subtraction, multiplication, division and exponentia-
tion), what is the largest number you can make using three copies of the digit “9”?

It’s pretty clear we should just stick to exponents, and given that, here are some possibilities:999, 999,
999, and999

.

Already we need to be a little careful with the final one:999

. Does this mean:(99)9 or 9(99)? Since
(99)9 = 981 this interpretation would gain us very little. If this were the standard definition, then why
not writeabc

asabc? Because of this, a tower of exponents is always interpretedas being evaluated from

right to left. In other words,abc

= a(bc), abc
d

= a(b(c
d)), et cetera.

With this definition of towers of exponents, it is clear that999

is the best we can do. If expanded com-
pletely, it would have more than369, 000, 000 decimal places.

It’s a different story with three copies of the digit2, however. The number222 is the best you can do.

It’s fairly clear that stacking exponents makes huge numbers very rapidly, and you might at first think
that if you’ve got 100 symbols, your best bet would be to stack100 9s in a tower of exponents and that
would pretty much beat all the other possibilities. While this would be a pretty large number, with a little
cleverness you can dofar better.

2 Factorials and Their Relatives

The factorial function,n! = n × (n − 1) × · · · 3 × 2 × 1 is known to generate very large numbers, but if
we’re counting symbols in our description of large numbers,we can probably do better with 9’s than with
the factorial. With no limit on factorials, for example, there is of course no limit to the size of a number
we could generate with just three 9’s, since we could have:

999!, (999!)!, ((999!)!)!, . . . .

(The parenthesis are required above, since usually the doubled factorial symbol means something else:
8!! = 8 × 6 × 4 × 2 and9!! = 9 × 7 × 5 × 3 × 1, et cetera.)

There is also a hyper-factoralH(n) function that generates even larger numbers:

H(n) = 11 × 22 × 33 × · · · × nn.
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Finally, Pickover has defined a superfactorial function,n$, defined as follows:

n$ = n!n!·
·

·

n!

︸ ︷︷ ︸

n! copies

,

and even3$ has an enormous number of digits.

3 Names of Large Numbers

How are large numbers named? There’s some disagreement in the English language about how to name
them. There are two systems, one used by Americans and the other by the English. Most of the rest of
the world uses a system similar to the English one. In a sense,the English system is a bit more logical in
that the prefixes “Bi”, “Tri”, “Quad”, et cetera stand for two, three, and four groups of six zeroes. In the
American system, “Bi”, “Tri” and “Quad” stand for three, four, and five groups of three zeroes.

Here are the first few names in both systems:

Number Scientific American English
Notation Name Name

1, 000 103 Thousand Thousand
1, 000, 000 106 Million Million

1, 000, 000, 000 109 Billion Thousand Million
1, 000, 000, 000, 000 1012 Trillion Billion

1, 000, 000, 000, 000, 000 1015 Quadrillion Thousand Billion
1, 000, 000, 000, 000, 000, 000 1018 Quintillion Trillion

In the English system, sometimes the names “Milliard”, “Billiard”, “Trilliard”, “Quadrilliard”, et cetera,
are used in place of “Thousand Million”, “Thousand Billion”, et cetera.

The names continue in the same general way, and after Quintillion, they are: Sextillion (1021), Septil-
lion (1024), Octillion (1027), Nonillion (1030), Decillion (1033), Undecillion (1036), Duodecillion (1039),
Tredecillion (1042), Quattuordecillion (1045), Quindecillion (1048), Sexdecillion (1051), Septendecillion
(1054), Octodecillion (1057), Novemdecillion (1060), Vigintillion (1063), Unvigintillion (1066), Dovigin-
tillion (1069), Trevigintillion (1072), Quattuorvigintillion (1075), Quinvigintillion (1078), Sexvigintillion
(1081), Septenvigintillion (1084), Octovigintillion (1087), Novemvigintillion (1090), Trigintillion (1093).

The numbers in parentheses above correspond to the Americannames. To obtain the English values,
subtract3 from each exponent and then double it.

The name Decillion is sometimes used to indicate10303 in the American system and10600 in the English
system. The name Googol stands for10100—a1 followed by a hundred zeroes—and the name Googolplex
means the number1 followed by a Googol zeroes.

4 Scientific Names

You’ve probably heard of prefixes like “centi” meaning “hundredth” and “mega” meaning “million”. So
“centimeter” is one hundredth of a meter and “megavolt” is a million volts. There is an SI-approved set
of prefixes for measurements for a large number of sizes. Hereis a table:
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Multiplier Prefix Multiplier Prefix

101 deca 10−1 deci
102 hecto 10−2 centi
103 kilo 10−3 milli
106 mega 10−6 micro
109 giga 10−9 nano
1012 tera 10−12 pico
1015 peta 10−15 femto
1018 exa 10−18 atto
1021 zetta 10−21 zepto
1024 yotta 10−24 yocto

So in20 grams of hydrogen gas, there are about 10 moles ofH2 molecules, or10 × 6.02323 = 6.023 ×
1024 = 6.023 yotta molecules.

5 A Really Big Number

This is the firstreally big number I ever saw. It was shown to me by Leo Moser while I wasin high school.

First, we begin by saying what we mean byn



111 (which we will pronounce as “triangle-n”). It will simply

be defined asnn:
n



111 = nn.

Thus, 2



111 = 22 = 4, and 3




111 = 33 = 27, et cetera.

Next, we’ll define “square-n”: n , to be the numbern surrounded byn triangles. Thus,2 = 2



111








11111 =

4



111 = 44 = 256.

In a similar way, we’ll define “pentagon-n”: n
HHvv

)) �� , to be the numbern surrounded byn squares. Thus,

2
HHvv

)) �� = 2 = 256 . So how big is “square-256”? Well, it is the number256 surrounded by256

triangles. To get rid of the innermost triangle, we obtain256256, a number with616 digits, surrounded
by 255 triangles. Raising this616-digit number to its own power will leave us with “only”254 triangles,
et cetera. It is fairly obvious that this number is almost unimaginably large. The number “pentagon-2” is
sometimes called just “mega”, and “pentagon-10” is sometimes called “megistron”.

In the same way, we can define “hexagon-n”, “heptagon-n”, and so on.

But at this point I become bored with my notation so I’ll introduce an easier one. Define “2-sub-1”,
“2-sub-2”, et cetera, as:

21 = 2



111

22 = 2

23 = 2
HHvv

)) ��

24 = 2
11

11 



and so on. The number I amreally interested in is:

2
2
HHvv)) ��
,

or in other words, “2-sub-pentagon-2”.

As professor Moser said, “Of course now that I’ve shown you this one, you can show me a larger one,
but this is probably the largest number you have ever seen.”,and he was certainly right for that particular
group of high-school students. This huge number is sometimes called the Moser number.
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6 Ackermann’s Function

Note: If you are a teacher presenting this to younger students, youmay find the pedagogical notes in
Section 13 useful.

Let’s consider an innocent-looking function which is simple to describe, but which will increase at an
unbelievable rate. It is a very famous rapidly-increasing function introduced by Ackermann to settle a
problem in logic. He wanted to show that there exist “generalrecursive” functions that are not “primitive
recursive”. We don’t worry about the definitions of “primitive recursive” or “general recursive”, but his
proof consisted of the presentation of a general recursive function (Ackermann’s function) that he could
show to increase more rapidly than any primitive recursive function.

The function we wish to calculate is called Ackermann’s function, and it is defined as follows:

A(m, n) =







n + 1 : if m = 0
A(m − 1, 1) : if m > 0, n = 0

A(m − 1, A(m, n − 1)) : if m > 0, n > 0
(1)

The easiest way to understand it is to make a table of the values of A(m, n) beginning with the easy
ones. In the table below,n increases to the right, and the rows correspond tom = 0, 1, 2, 3, . . .. The “*”s
indicate values we have not yet determined. The first row, wherem = 0, is easy. The general formula is
obviouslyA(0, n) = n + 1.

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 * * * * * * * * * * *
2 * * * * * * * * * * *
3 * * * * * * * * * * *
4 * * * * * * * * * * *

The next row wherem = 1 is a bit trickier. Ifn = 0 we can use the second line in formula 1 that defines
Ackermann’s function to obtain:A(1, 0) = A(0, 1) = 2.

What is A(1, 1)? We must apply the third row in formula 1 to obtain:A(1, 1) = A(0, A(1, 0)) =
A(0, 2) = 3. Similarly: A(1, 2) = A(0, A(1, 1)) = A(0, 3) = 4. Make sure you understand what is
going on by working out a few more, and finally we can fill out thesecond row of the table as follows.

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 * * * * * * * * * * *
3 * * * * * * * * * * *
4 * * * * * * * * * * *

The general formula for this row isA(1, n) = n + 2.

The third row can be approached in the same way:

A(2, 0) = A(1, 1) = 3

A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5

A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7

A(2, 3) = A(1, A(2, 2)) = A(1, 7) = 9

We can continue (do so for a few more) to obtain the third row:

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 3 5 7 9 11 13 15 17 19 21 23
3 * * * * * * * * * * *
4 * * * * * * * * * * *
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The general formula for this row isA(2, n) = 2n + 3.

Repeat the process forA(3, n):

A(3, 0) = A(2, 1) = 5

A(3, 1) = A(2, A(3, 0)) = A(2, 5) = 13

A(3, 2) = A(2, A(3, 1)) = A(2, 13) = 29

A(3, 3) = A(2, A(3, 2)) = A(2, 29) = 61

If you do a few more, you will see that the table now looks like this:

m\n 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12
2 3 5 7 9 11 13 15 17 19 21 23
3 5 13 29 61 125 253 509 1021 2045 4093 8189
4 * * * * * * * * * * *

The general formula for this row isA(3, n) = 2n+3 − 3.

Beginning with the next line, things begin to get ugly:

A(4, 0) = A(3, 1) = 13 = 222

− 3

A(4, 1) = A(3, A(4, 0)) = A(3, 13) = 65533 = 2222

− 3

A(4, 2) = A(3, A(4, 1)) = A(3, 65533) = 265536 − 3 = 2222
2

− 3

A(4, 3) = A(3, A(4, 2)) = A(3, 265536 − 3) = 2265536

− 3 = 2222
22

− 3

The general form forA(4, n) is this:A(4, 0) = 222

− 3, A(4, 1) = 2222

− 3, and in general, each time we
increase the value ofn, the height of the tower of exponents of 2 increases by 1. If wedenote byT (n) the
value of a tower of exponents of heightn, where all the exponents are2, thenA(4, n) = T (n + 3) − 3:

m\n 0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
2 3 5 7 9 11 13 15 17 19
3 5 13 29 61 125 253 509 1021 2045

4 222

− 3 2222

− 3 2222
2

− 3 2222
22

− 3 2222
22

2

− 3 · · ·

If you’ve worked a bunch of these examples by hand, you can seethe general pattern. The first number in
each row is the second number in the row above it. Each successive number in a row is found by looking
at the previous number and going that many steps ahead in the row above.

The fifth row thus begins withA(5, 0) = 65533. The second number,A(5, 1) requires that you evaluate a
tower of exponents of 2 having height65536, et cetera. We can convert this fantastically rapidly growing
function of two variables into a single-variable function as follows:A(n) = A(n, n).

7 An Alternative Notation

If we examine the rows in the tables of values of Ackermann’s function, we can see a pattern of growth.
For Ackermann’s function, the rows always seem to involve2 (multiplication by2, powers of2, towers
of powers of2, et cetera). The other annoying thing about this function are the extra “−3” values that
appear in the equations.

Ackermann’s function is interesting for historical reasons, but if we’re simply interested in large numbers,
there’s a cleaner and more general way to represent this typeof number. We’ll do it as follows, following
Knuth and Conway:
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nm = n + n + · · · + n (m copies of n)

n ↑ m = nnn · · ·n = nm (m copies of n)

n ↑↑ m = n ↑ n ↑ n · · ·n ↑ n (m copies of n)

n ↑↑↑ m = n ↑↑ n ↑↑ n · · ·n ↑↑ n (m copies of n)

n ↑↑↑↑ m = n ↑↑↑ n ↑↑↑ n · · ·n ↑↑↑ n (m copies of n)

As was the case with exponents, we will evaluate the expressions above from right to left. The first two
lines are fairly straight-forward, but let’s look at some examples from the third row:

3 ↑↑ 3 = 3 ↑ 3 ↑ 3 = 333

= 327 = 7625597484987

2 ↑↑ 4 = 2 ↑ 2 ↑ 2 ↑ 2 = 2222

= 216 = 65536

It’s fairly clear that this third row corresponds to towers of exponents, but with then andm, we can easily
specify towers of any number to any height.

The fourth row also behaves much like the Ackermann function:

3 ↑↑↑ 3 = 3 ↑↑ 3 ↑↑ 3 = 3 ↑↑ 7625597484987

which is an exponent tower of3s of height7625597484987. Let’s just call this giant numberX .

It is difficult even to think about the next row:

3 ↑↑↑↑ 3 = 3 ↑↑↑ 3 ↑↑↑ 3 = 3 ↑↑↑ X

This will consist of a list ofX 3s with two up-arrows between each pair. This huge number,3 ↑↑↑↑ 3,
comes up again in Section 9.2.

Using the up-arrow notation above, the Ackermann numbersA(n) are something like1 ↑ 1, 2 ↑↑ 2,
3 ↑↑↑ 3, 4 ↑↑↑↑ 4, and so on.

8 Still Larger Numbers

The notation above represents a number using two other numbers plus certain number of up-arrows be-
tween them. We might as well represent the number of arrows asa number as well.

The following notation, following Conway and Guy, does justthat. Let:

a → b → c

represent the numbera followed byc up-arrows followed byb. Thus3 → 4 → 5 is the same as3 ↑↑↑↑↑ 4.
Using this notation, the Ackermann numbers (as described inthe previous section) look liken → n → n.

What we would like to do is describe what is meant by a chain of these right-pointing arrows. If there is
just one (as inn → m) this will meannm. The situation with two is described above, and if there are
more than two, here is the meaning:

To evaluate
a → b → c → · · · → x → y → z + 1 (2)

check the value ofz, If z = 0 then Equation 2 is the same as

a → b → c → · · · → x → y.

Otherwise the value depends ony. The following lines indicate the value fory = 1, 2, 3, et cetera:

y = 1 : a → · · · → x → z

y = 2 : a → · · · → x → (a → · · · → x) → z

y = 3 : a → · · · → x → (a → · · · → x → (a → · · · → x) → z) → z
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These numbers arehuge. Consider3 → 3 → 3 → 3:

3 → 3 → 3 → 3

= 3 → 3 → (3 → 3 → (3 → 3) → 2) → 2

= 3 → 3 → (3 → 3 → 27 → 2) → 2

= 3 → 3 → (3 → 3 → (· · · )) → 2

where the “(· · · )” represents a27-deep nesting of(3 → 3). You can imagine that by the time this whole
thing is expanded, there will be an absolutely mind-boggling number of up-arrows.

9 Famous Large Numbers

In this section we’ll consider a few historically famous large numbers.

9.1 Skewes’ Number

When the author was a child, various math books claimed that Skewes’ number was the largest that had
ever come up in a “practical” sense, meaning that it came up inthe proof of some important result.

If you don’t understand the following details, don’t worry too much, but basically the idea is this. Let
π(x) denote the prime number counting function. It is defined to bethe number of prime numbers less
than or equal tox. Soπ(3) = 2, π(9) = 4, et cetera.

Let li(x) be the logarithmic integral function1:

li(x) =

∫ x

0

dt

ln t
.

Anyway, for “small” numbers,π(x) − li(x) < 0, but Littlewood proved that this is not always the case,
and that in fact, asx → ∞, the sign of the expression on the left changes infinitely often. Skewes’ number
is is an upper bound on the smallestx such thatπ(x) − li(x) ≥ 0, but Littlewood’s proof contained no
estimates for what that value ofx might be.

Skewes, Littlewood’s student, proved in 1933 that this number must be less than:

eee
79

≈ 10101034

,

Assuming that the Riemann hypothesis is true. This is sometimes called the “first Skewes’ number, and
was the largest value to appear in a mathematical proof for a long time. The second Skewes’ number is
even larger, and it was his best result assuming that the Riemann hypothesis is false. The second number
is approximately:

1010101000

.

Much better bounds are known today, namely1.397162914 × 10316, but Skewes was the first to find a
bound.

9.2 Graham’s Number

Graham’s number is more modern, and dwarfs Skewes’ number. It is also an upper bound, but as we shall
see, it is a terrible upper bound. Before we describe it, we need to take a short digression to graph theory.

1The function as described here has a singularity atx = 1 if x >= 1 so we assume that the value is the Cauchy principal value,
for all the nit-pickers out there:

li(x) = lim
ǫ→0

“

Z

1−ǫ

0

dt

ln t
+

Z

x

1+ǫ

dt

ln t

”
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A standard problem that appears in almost every introduction to graph theory is this:

Suppose there is a set of six people, and every pair either knows each other or does not know each other.
Show that there is either a set of three people, all of whom know each other, or a set of three people, none
of whom know each other.

The problem is usually solved by drawing a mathematical graph with six vertices that represent the six
people, and each pair of vertices is connected with a line. The line is red if the two people know each
other, and blue if they do not. The problem reduces to showingthat there must either be a triangle with
all red lines or a triangle with all blue lines. Suppose that’s not the case. Consider any pointP , and there
will be five lines connecting it to the other points. At least three of these lines are red, or three of them
are blue. Suppose there are at least three red lines connectingP to pointsQ, R andS. (The situation is
similar for three blue lines.) Then to avoid any pure red triangles, the linesQR, RS andSQ must all be
blue. But then we have a pure blue triangleQRS, so we have a contradiction.

With fewer than six people, it is possible to have no sets of three acquaintances or non-acquaintances,
so six are required. This number six is called a “Ramsay number” for this problem. It turns out that the
question can be turned around a little as follows: “What is the smallest number of people required so that
there is at least a set ofn acquaintances or a set ofn non-acquaintances? Whatever that number is would
be called the Ramsay number forn for this sort of problem. Even for this problem, for relatively smalln,
the exact Ramsay number is unknown, but it is known that some such number exists.

There are hundreds of situations like this related to boundson sizes of graphs with colored vertices such
that some condition holds, and that’s exactly what Graham’snumber is. Here is the problem that defines
Graham’s number.

Given ann-dimensional hypercube, connect every pair of vertices to obtain a complete graph on2n

vertices. Color these edges with two different colors. Whatis the smallest value ofn for which every
possible coloring contains a single-colored complete sub-graph with 4 vertices that lies in a plane?

Again, if you don’t understand the exact problem, that’s unimportant; the key thing is to see that it is
similar to our first example, and this is just a Ramsay number for sub-graphs of size 4.

Graham proved that this number must be smaller than the number that we call Graham’s number, and that
number is huge. Using the up-arrow notation introduced in Section 7 (where we, in fact, looked at the
value ofg1 as defined below) define:

g1 = 3 ↑↑↑↑ 3

g2 = 3 ↑g1 3

. . . = . . .

g64 = 3 ↑g63 3

The numberG = g64 is Graham’s number. By the way, an exponent on the “↑” symbol means that the
symbol is repeated that many times. Using Conway’s notation, we have:

3 → 3 → 64 → 2 < G < 3 → 3 → 65 → 2.

What is sort of amazing about Graham’s number is that as of now, it is the best known bound for this
particular Ramsay number. But the best lower bound at the time this article was written is 11. That’s
right: the number 11, so the unknown true bound may be as smallas 11, and as large as Graham’s number
G.

9.3 The Busy Beaver Function

Here’s one more interesting function that seems to generateabsolutely huge numbers, but one of the
things that makes it so interesting is that there is no effective way to compute it. An effective computation
is one that is known to halt with the correct answer in a finite number of steps. The Busy Beaver function
is not one of these.
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Again, to describe the Busy Beaver function, we’ll need to take a short digression to talk about Turing
machines, first described by Alan Turing. We will describe here a very simple Turing machine.

Imagine a machine with a certain numbern of internal states, one of which is the initial state, and an
additional “halted” state, so there are actuallyn + 1 states. If the machine ever gets to the “halted” state,
computation ceases.

At any point, the machine is “looking at” one position on an arbitrarily long tape which initially contains
zeros in every position. Each position can contain either a zero or a one. The machine has a set of
instructions, and each instruction tells it, for every internal state what to do if it is looking at a zero or
looking at a one. The “what to do” consists of three things:

1. Whether to write a zero or one into the current position. (To leave the value at the position the
same, just write the value that is there.)

2. Whether to move left or right one position along the tape. (There has to be movement.)

3. What the new state of the machine will be after the move.

If there aren states, there are only a finite number of Turing machines. Theinstructions have to exist for
2n conditions, and there are4n+4 actions that the machine can take for each of these conditions, so there
are at most(4n + 4)2n machines.

Some of them halt instantly, and some run forever. As a machine that runs forever, imagine a machine
that always stays in the initial state, writes a one, and thenmoves to the left.

Let’s look at an example of a very simple Turing machine with just two states (three, including the “halted”
state). We will label the states with letters:A, B, C, et cetera, and we will useH for the “halted” state.
Let’s also assume that the machine begins in stateA. We will label the movementsR andL for “move
right” and “move left,” respectively, and we will indicate with a0 or a1 whether to write a zero or a one
at the current position before moving. Here is a simple two-state machine:

0 1

A 1RB 1LB

B 1LA 1RH

Here’s the interpretation: If the machine is in stateA and sees a zero, write a one, move right, and
change to stateB. A macine in stateA that sees a one will write a one (in other words, leaving the tape
unchanged), will move left, and will change to stateB. The second row similarly describes what the
machine will do if it is in stateB and sees a zero or a one.

Let’s follow the action of this machine one step at a time.

start · · · 0 0 0 0 0A 0 0 0 0 · · ·
1 · · · 0 0 0 0 1 0B 0 0 0 · · ·
2 · · · 0 0 0 0 1A 1 0 0 0 · · ·
3 · · · 0 0 0 0B 1 1 0 0 0 · · ·
4 · · · 0 0 0A 1 1 1 0 0 0 · · ·
5 · · · 0 0 1 1B 1 1 0 0 0 · · ·
6 · · · 0 0 1 1 1H 1 0 0 0 · · ·

At the start, we have a tape filled with zeros, the machine in stateA, and it is looking at one of the zeroes.
In the chart above, the state is written in the tape position the machine is looking at. Since the state isA

and there’s a zero in that slot, the table that describes the machine says to write a1 and move to the right.
The second line in the table above shows the situation at thatpoint. Follow along and see that after six
steps the machine finally halts and at that point has written four1’s.

Here is an exercise to see if you understand how these machines work. Below is a three-state machine.
Use the same representation as above to see how many1’s are written by this machine before it halts:
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0 1

A 1RB 1RH

B 0RC 1RB

C 1LC 1LA

Try to do this yourself, but there is a solution in Section 14.

Among all the machines withn states that do eventually halt, one of them must halt with thelongest string
of ones? The length of that string of ones is the output for theBusy Beaver function ofn, usually written
Σ(n).

Here are some known facts:

• Σ(1) = 1.

• Σ(2) = 4. This can be proved by enumeration of all possible machines.

• Σ(3) = 6. This isnot easy to prove.

• Σ(4) = 13.

• Forn > 4, nobody knowsΣ(n). Σ(5) ≥ 4098, andΣ(6) ≥ 3.514× 1018276. As n increases, these
numbers grow astronomically.

Here is a web page that lists some results of the “Busy Beaver Competition,” including descriptions of the
record-holding machines:

http://www.logique.jussieu.fr/~michel/bbc.html

In the next section we will give an example of a fairly simple machine (that could easily be converted into
a Turing machine) that generates surprisingly large numbers.

10 Goodstein’s Theorem

10.1 Hereditary base-k notation

To state Goodstein’s theorem, we first need to describe what is meant when we express a number in
hereditary base-k notation. Let us begin using base-2 as an example.

The usual way to write the number143 in base-2 is:

143 = 27 + 23 + 22 + 2 + 1,

with the understanding that we could write2 as21 and1 as20.

But if we are trying to avoid using numbers larger than 2, we’dlike to get rid of the7 and the3 that appear
in the exponents above, so we can always write7 = 22 + 2 + 1 and3 = 21 + 1:

143 = 222+2+1 + 22+1 + 22 + 2 + 1.

The expansion above represents143 in hereditary base-2 notation.

There is nothing special about base-2; if we’re interested in base-k, we’d like to use the variablek only
when it requires an exponent, and otherwise use only values ranging from0 to k − 1. Let’s try the same
number,143, in hereditary base-3:

143 = 34 + 2 · 33 + 2 · 3 + 2 = 33+1 + 2 · 33 + 2 · 3 + 2.

If this idea isn’t perfectly clear, there will be many other examples in this section that display expansions
of numbers using various hereditary bases.
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10.2 Goodstein sequences

A Goodstein sequence begins with any integerg and is constructed as follows:

1. Setn, the current value of the sequence, tog. Setk, the current hereditary base, to2.

2. if n = 0 the sequence terminates; otherwise:

3. Write the current elementn of the sequence in hereditary base-k. The new value ofn, and the next
element of the sequence, is obtained by changing all occurrences ofk to k + 1 in this expression,
and then subtracting one from that value.

4. Increase the value ofk by 1, and go to step 2 above.

Let’s step through an example: we’ll construct the first few terms of the Goodstein sequence beginning
with the number4:

Term Hereditary notation Value Next term
1 22 4 33 − 1
2 2 · 32 + 2 · 3 + 2 26 2 · 42 + 2 · 4 + 2 − 1
3 2 · 42 + 2 · 4 + 1 41 2 · 52 + 2 · 5 + 1 − 1
4 2 · 52 + 2 · 5 60 2 · 62 + 2 · 6 − 1
5 2 · 62 + 6 + 5 83 2 · 72 + 7 + 5 − 1
6 2 · 72 + 7 + 4 109 2 · 82 + 8 + 4 − 1
7 2 · 82 + 8 + 3 139 2 · 92 + 9 + 3 − 1
8 2 · 92 + 9 + 2 173 2 · 102 + 10 + 2 − 1
9 2 · 102 + 10 + 1 211 2 · 112 + 11 + 1 − 1
10 2 · 112 + 11 253 2 · 122 + 12 − 1
11 2 · 122 + 11 299 2 · 132 + 11 − 1

To make sure you understand what is going on, you should verify by hand that the Goodstein sequences
beginning with1, 2 and3 are: {1, 0}, {2, 2, 1, 0} and{3, 3, 3, 2, 1, 0}, respectively. If you’d like, try to
show that the first few terms for the Goodstein sequence beginning with5 are:{5, 27, 255, 467, 776, ...}.

The Goodstein sequence beginning with4 increases, but apparently not too rapidly. To show what usually
occurs, let’s look at the sequence beginning with19 and keep in mind that19 is a fairly small number:

Term Hereditary form Value
1 222

+ 2 + 1 19

2 333

+ 3 7625597484990

3 444

+ 3 ≈ 1.3 × 10154

4 555

+ 2 ≈ 1.8 × 102184

5 666

+ 1 ≈ 2.6 × 1036305

6 777

≈ 3.8 × 10695974

7 7 × 87×87+7×86+7×85+···+7×8+7

+7 × 87×87+7×86+7×85+···+7×8+6

+7 × 87×87+7×86+7×85+···+7×8+5 + · · ·
+7 × 88+2 + 7 × 88 + 1
+7 × 88 + 7 × 87 + 7 × 86 + 7 × 85 + · · · + 7 × 8 + 7 ≈ 6 × 1015151335

8 7 × 97×97+7×96+7×95+···+7×9+7

+7 × 97×97+7×96+7×95+···+7×9+6

+7 × 97×97+7×96+7×95+···+7×9+5 + · · ·
+7 × 99+2 + 7 × 99+1

+7 × 99 + 7 × 97 + 7 × 96 + 7 × 95 + · · · + 7 × 9 + 6 ≈ 4.3 × 10369693099

With even such a tiny number as19 as the first term, this Goodstein sequence takes off like a rocket! What
is surprising, perhaps, is that even our first example where we began at 4 does get quite large. In fact it
eventually increases to3 · 2402653210 − 1 after which it eventually decreases to zero, and thus terminates.
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What is even more surprising is that if we examine the Goodstein sequence beginning with any integer,
every one of them eventually converges to zero. For large starting values, this will take a long time and the
numbers in the sequence will get incredibly large before they start down. For example, in the sequence
beginning with19, the eighth term is already larger than the largest value obtained by the sequence
beginning with4.

We will not present a completely formal proof of Goodstein’stheorem which states that Goodstein se-
quences all terminate at zero, but we will provide an outlineof the proof and some comments on it later,
in Section 10.3.

Assuming that Goodstein’s theorem is true: that all Goodstein sequences eventually terminate at0, we
can define the following function: LetG(n) be the largest value obtained by the Goodstein sequence
that begins withn. ThusG(0) = 0, G(1) = 1, G(2) = 2, G(3) = 3, G(4) = 3 · 2402653210 −
1, andG(5) is ever so much more vastly larger than that. As with functions like Ackermann’s, what
we have constructed is a very rapidly increasing function. This one, however, grows much faster than
Ackermann’s. G(1000000) will be pretty big, and by now every reader of this article will be able to
produce much larger numbers, given that they can use this functionG.

10.3 Proof of Goodstein’s theorem

This is not a formal proof, but if you know about infinite ordinal numbers and the fact that they are well-
ordered, you will be able to expand the outline below to a formal proof. If you don’t know about ordinal
numbers, the outline attempts to show you the basic ideas.

Unfortunately, the construction of the infinite ordinal numbers requires a much more powerful theory
(Zermelo-Fraenkel set theory) than what is usually required to prove theorems about the arithmetic of the
natural numbers. Usually all that is required to prove almost every theorem you know about the natural
numbers are the so-called “Peano postulates”.

What is doubly unfortunate is that it is impossible to prove Goodstein’s theorem from the Peano postu-
lates, although the proof of the fact that such a proof is impossible is far beyond the scope of this article.

10.4 The infinite ordinals

The ordinals are basically an extension of the natural numbers through infinite values. You can get to all
the natural number by starting with0 and obtaining the next by adding1 to the previous. If those are the
only things you’re allowed to do, then only the finite naturalnumbers are accessible:

{0, 1, 2, 3, 4, 5, . . .}.

To obtain the infinite ordinals, we also allow you to construct a new ordinal that is just larger than any
infinte sequence of ordinals previously obtained. The first infinite ordinal is called “omega” and is indi-
cated by the Greek letter of the same name: “ω”. Such ordinals are called “limit ordinals”, of whichω is
the first.

But onceω is allowed, since we are able to add one, we can obtain:ω + 1, ω + 2, ω + 3 and so on. Since
ω + n is a valid ordinal for any natural numbern, we can include the limit ofω, ω + 1, ω + 2, . . . , and
it will be ω + ω, which is usually denoted byω × 2, the second limit ordinal. Then of course we can get
ω × 2 + 1, ω × 2 + 2, . . . , and the limit of that sequence of ordinals will be the third limit ordinal: ω × 3.

In a similar way, we can obtain the limit ordinalsω × 4, ω × 5, . . . , and we can then construct another
limiting sequence:

ω, ω × 2, ω × 3, ω × 4, . . . .

The limit of that will beω × ω = ω2. Then we’re back toω2 + 1, ω2 + 2, . . . ,ω2 + ω, ω2 + ω + 1, . . . ,
ω2 + ω × 2, . . . ,ω2 × 2, ω2 × 2 + 1, . . . ,ω3, . . . ,ω4, . . . ,ωω, . . . , . . . .

Obviously, we’ve skimmed over a lot, but all this can be done in a very formal and logical way.
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10.5 Well-ordering of the ordinals

The amazing thing is that this set of infinite ordinal numbersis “well-ordered”, and that means that any
decreasing series of ordinals is of finite length: it is impossible to construct an infinite set of decreasing
ordinals, no matter how large a one you start with.

The idea of well-ordering is obvious if we just look at the natural numbers: If you begin with some
number and each successive number in the sequence is smaller, you must stop at zero after a finite number
of steps. If you start with a million and start stepping down,you can’t possibly take more than a million
steps. Obviously you can make a decreasing sequence of natural numbers as long as you want, but every
one is finite.

The infinite ordinals behave the same way. Let’s look at some examples. First, suppose you start “in-
finitely far along”, atω itself. What is the next smaller ordinal in your sequence?

Well, ω is the first infinite ordinal, so every smaller ordinal is finite. Once you take that first step down,
to a million, or a billion, or to a googleplex, there are only afinite number of additional steps left to go.
When you take that one step down, it is enormous.

Soω won’t work as an ordinal from which you can make an infinite number of steps down. It’s clearly
pointless to start fromω + k, wherek is finite, since after at mostk steps you’ll be back atω, and from
there it’s only a finite number of steps to the bottom. How about ω × 2?

Well, the first step down will take you toω + k, wherek finite, so that’s no good. There are similar
problems withω × 3, ω × 4, or ω × k, wherek is finite: it’s only a finite number of steps down to get rid
of each multiple ofω.

How aboutω2? Well, the first step down has to have a largest term of the formω × k, so that’s no good,
either. We have to be a little careful here, since here’s a number smaller thanω2:

ω × 1000 + ω × 999 + ... + ω × 2 + ω + 1000000,

but the expression will only have a finite number of terms, andthey must be knocked off, one by one.

In fact, you can sort of imagine an inductive proof2 that there are always a finite number of steps to the
bottom. Suppose that the ordinalκ is the first one from which there is an infinte descending sequence.
If κ is of the formλ + 1, then the first step down is toλ, from which there are only a finite number of
steps to the bottom or to a number even smaller thanλ, from which there are also at most a finite number
of steps down. Similarly, ifκ is one of the “limit ordinals”, the first step down will be to one from from
which there are only a finite number of steps to zero, soκ will share that property.

Try to figure out what might happen withωω – a pretty large ordinal3. You can play around with this a bit
if you like, and perhaps that will make things clearer.

10.6 Proof of Goodstein’s theorem

Anyway, if you believe that the infinite ordinals are well-ordered, the proof that Goodstein sequences all
terminate at zero is not too hard. What we will do is replace every term of such a sequence in hereditary
notation by an ordinal number that is clearly larger than it.We will show that the sequence of ordinals
thus obtained is a decreasing sequence, so the Goodstein sequence will be dominated by a sequence of
ordinals that we know tends to zero, and hence the dominated sequence will also tend to zero.

The dominating ordinal is simple: just replace all occurrences of the base byω. So for example, in our
example of the Goodstein sequence beginning with19, the first few terms, and their dominating ordinals
are:

2This is actually not a proof by finite induction that you’re probably familiar with, but rather a proof by “transfinite induction”.
It is, however, very similar to the usual proofs by finite induction.

3Well, “pretty large” is optimistic: almost all ordinals, ofcourse, are larger.
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Term Hereditary form Ordinal
1 222

+ 2 + 1 ωωω

+ ω + 1

2 333

+ 3 ωωω

+ ω

3 444

+ 3 ωωω

+ 3

4 555

+ 2 ωωω

+ 2

5 666

+ 1 ωωω

+ 1

6 777

ωωω

On the next step, of course, we take ahuge step down in the ordinals. The largest term in the exponent of
the bottomω contains only finite powers ofω; notωω. If you want to see what it looks like, just substitute
ω for every8 in the expansion of term7 that we did in the previous section for the Goodstein sequence
beginning with19.

10.7 Behavior of Goodstein sequences

Every Goodstein sequence behaves similarly in the following sense: as long as the base itself appears
in the expansion with even a multiple of2, the sequence will increase. That’s because when the base
increases for the next term, the increase will be multipliedby at least2, and only1 is subtracted.

Goodstein sequences finally reach a point where they have thefollowing form:

B × 1 + k,

whereB is the base andk is a (usually huge) constant. At this point, the sequence stays constant fork
steps, since at each step, althoughk is reduced by1, B is increased by1. Finally, the term looks like
B × 1 + 0 and after1 is subtracted from that, the base will not appear in the expression; only a constant
will. After this, the sequence steps down to zero, one unit ata time.

So every Goodstein sequence increases (often incredibly rapidly at first), and keeps increasing until it
obtains the form above. Then it is constant for a long time, after which it reduces to zero by one at each
step.

11 Are We Cheating?

In the previous sections we have presented some very large numbers in a very compact way, but since
each of these methods required a few paragraphs of explanation, aren’t we really cheating? Shouldn’t we
count the description of the method?

If you have a contest to “describe the largest number you can usingn symbols”, you’ve got to say at the
beginning what the allowable symbols are. Otherwise you canimagine a many-page description of a huge
number where the last sentence is, “Call that numberX .” Then the description is a single character, “X”,
and that’s not really fair.

One good way to structure such a contest might be to describe avirtual calculator that has certain buttons
on it, and the contest is something like, “Make the largest number in the display you can with at mostn

button-presses.” If the calculator has a factorial button on it, then9! might be the winning candidate for
the two-button-press version of the contest.

If the calculator is programmable, then you would need to count the strokes necessary to create the
program that is run with an additional button press, et cetera.

In any case, to end this article with an interesting example,imagine a calculator that has a bunch of
variables in it, (say, A, B, C, . . . , all of which are initiallyzero), and only allows the following sorts of
operations:

• A + + Increment the value of variableA by 1.
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• A −− Decrement the value of variableA by 1 unlessA = 0.

• A :: x If A 6= 0 go to line number x; otherwise, continue to the next line.

Here is a 23 line program written in the language above. Try tofigure out how large the numbersA, B,
C, D, andE get by the time the program terminates. It is fairly impressive, given that essentially the only
allowable operations are “add one”, “subtract one”, and “branch if non-zero”.

1: E + + 9: A + + 17: D −−
2: E + + 10: B −− 18: D :: 5
3: E + + 11: B :: 8 19: D + +
4: E + + 12: C −− 20: C −−
5: B + + 13: C :: 5 21: C :: 19
6: A −− 14: C + + 22: E −−
7: A :: 5 15: A −− 23: E :: 5
8: A + + 16: A :: 14

12 Even Larger Numbers

In a sense, all the numbers described in previous sections are tiny compared to what we will encounter
here. Up to this point, the text in this article contains fewer than6000 words, and think of all the different
large numbers we have defined.

As a closing idea, consider the functionF (n) which is defined to be “the largest integer than can be
defined inn or fewer English words.” This is obviously very sloppy, but the idea is not so bad. We could
define a perfectly formal language and make a definition like this one precise, but that requires a lot of
work. Let us just stick with English for now.

What isF (1)? Perhaps “googolplex”? It’s at least that big. We know thatF (6000) is far more than
sufficient to describe all the numbers here so far, and it’s clear thatfar larger numbers could have been
defined. But with thisF , we can do all the tricks again. What ifG(1) = F (1), andG(n) = F (G(n−1)),
for example? We already know thatG(2) is at least as big as the largest number that could be described
with a googolplex words.

These numbers, of course, will not be computable in the same sense that the Busy Beaver numbers in
Section 9.3 are not. But they exist, and are guaranteed to be unimaginably huge.

It’s always good to keep in mind, however, what is sometimes called “The Frivolous Theorem of Arith-
metic”: Almost all numbers are very, very, very large. In fact, even considering all the particular huge
numbers listed in this article, almost all numbers are much,much larger than any of them. . . .

13 Pedagogical Notes

For younger students (in middle school, for example), it’s probably a bad idea just to write down the
definition of Ackermann’s function without an introduction.

This is a good time to do a review of functional notation. For example, just review some standard, simple
function definitions, emphasizing the idea that the definition provides a rule (or rules) for determining the
output given the input.

If, for example, the function is defined as:

f(x) = x2 − 3,

then to evaluatef for any particular input, you simply substitute the input value for thex on the right-hand
side of the equation above and evaluate it. In this example, you simply square the input value and subtract
3, sof(5) = 52 − 3 = 25 − 3 = 22, or f(20) = 202 − 3 = 400 − 3 = 397.
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Ackermann’s function, unfortunatley, is more complex in two ways. First, it’s a function oftwo variables,
and second, it is defined recursively. Rather than jump rightin, introduce the two ideas in two steps. First,
look at functions of more than one variable.

An example might be this: The ticket price at a movie theatre is $10 for an adult, and $6 for a child. What
we seek is a formula to tell us the admission cost for a mixed group of adults and children. Here is the
answer:

f(a, c) = 10a + 6c,

wheref(a, c) represents the admission cost for a group consisting ofa adults andc children. Make it
clear why this is the correct function, and why, to determinethe numerical output, you need to know both
the number of adults and children.

But even without complete information, you can simplify theformula with partial information. For exam-
ple, suppose you know that the group is going to consist of 4 adults, but you don’t yet know the number
of children. If we letc stand for the (as yet unknown) number of children, the total cost will be:

f(4, c) = 10 · 4 + 6c = 40 + 6c.

Using this simpler function, all you need to do is plug in the value ofc to obtain the final cost.

The other type of function, a so-called “recursive function” is a little more interesting. Here is perhaps the
best example to use, since the function is already known to the students, but probably never in the form
shown below. The functionF , defined below, is defined for all positive integers.

F (n) =

{
1 : if n = 1

n · F (n − 1) : if n > 1
(3)

The only time you know the answer immediately is if the input value happens to be zero:F (1) = 1. But
what is the value ofF (4)? Well, you just follow the rule stated in the second line of Equation 3. The
input value,4, is not equal to zero, so you must use the second rule:

F (4) = 4 · F (3). (4)

This doesn’t seem to help much since we don’t know the value ofF (3), but if we have faith, we can just
reuse the definition. (A mathematician would say that we are using Equation 3 recursively.) To evaluate
F (3) we first note that the input value,3, is not zero, soF (3) = 3 ·F (2). Substituting this value forF (3)
into Equation 4 yields:

F (4) = 4 · (3 · F (2)), (5)

and we’re now left with the problem that we don’t know the value off(2). But we can reuse Equation 3
yet another time to obtainF (2) = 2 · F (1), so the original Equation 4 now looks like:

F (4) = 4 · (3 · (2 · F (1))),

and now we’re in good shape because we know thatF (1) = 1, so we have:

F (4) = 4 · (3 · (2 · 1)) = 4! = 24.

Try evaluatingF (6) using the same method, but as soon as you get to:

F (6) = 6 · (5 · F (4)),

you can tell the kids that we don’t need to go farther since we already worked out the value ofF (4),
which was4! = 24. Thus:

F (6) = 6 · 5 · 4! = 6 · 5 · 4 · 3 · 2 · 1 = 6!

Finally, point oiut that for this recursive function at least (and this will usually be the case), the easiest
way to figure out what’s going on is not to start with large values, although that will work, but to start
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with small ones. For this example, we know the value ofF (1) immediately, so work onF (2) which we
find to be2 · 1. Once we know the value ofF (2), we can see thatF (3) = 3 · F (2) = 3 · 2 · 1 = 3!. Then
we will see thatF (4) can easily be evaluted in terms ofF (3), and so on. After just a few steps like this,
it’s easy to see (and to prove, if you wish) thatF (n) = n!.

Notice that the recursive definition is in some ways nicer than the usual formula forn!:

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1,

since we never need to write the somewhat vague “· · · ”.

In any case, after this introduction, you can look at the morecomplicated Ackermann’s function which is
both a function of two variablesand recursive.

14 Turing Solution

Here is the simulation for the following Turing machine. This machine, in fact, is an example of a three-
state machine that achieves the longest row of1’s before halting. Here’s the machine:

0 1

A 1RB 1RH

B 0RC 1RB

C 1LC 1LA

And here’s the simulation:

start · · · 0 0 0 0 0A 0 0 0 0 · · ·
1 · · · 0 0 0 0 1 0B 0 0 0 · · ·
2 · · · 0 0 0 0 1 0 0C 0 0 · · ·
3 · · · 0 0 0 0 1 0C 1 0 0 · · ·
4 · · · 0 0 0 0 1C 1 1 0 0 · · ·
5 · · · 0 0 0 0A 1 1 1 0 0 · · ·
6 · · · 0 0 0 1 1B 1 1 0 0 · · ·
7 · · · 0 0 0 1 1 1B 1 0 0 · · ·
8 · · · 0 0 0 1 1 1 1B 0 0 · · ·
9 · · · 0 0 0 1 1 1 1 0B 0 · · ·

10 · · · 0 0 0 1 1 1 1 0 0C · · ·
11 · · · 0 0 0 1 1 1 1 0C 1 · · ·
12 · · · 0 0 0 1 1 1 1C 1 1 · · ·
13 · · · 0 0 0 1 1 1A 1 1 1 · · ·
14 · · · 0 0 0 1 1 1 1H 1 1 · · ·
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