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1 Infinite series

Infinite sums play an essential role in much of mathematics. Some of the most

important functions are given by infinite sums: for example the exponential function:

ex = 1 + x + x2/2 + x3/6 + · · ·+ xn/n! + · · ·

We cannot make sense of infinite sums just by knowing about finite sums: we

need to decide what it means to add up infinitely many numbers. The definition

that has been found to work best is the following. Given an infinite sum

a1 + a2 + a3 + · · ·

we look at the sequence of what are called partial sums obtained by adding the terms

one after another
a1

a1 + a2

a1 + a2 + a3

...

If these partial sums approach some fixed number A as we keep adding, then we say

that the infinite sum converges and that the sum is A.

For example if the terms are 1/2, 1/4, 1/8, . . . ther partial sums are

1/2 = 1/2

1/2 + 1/4 = 3/4

1/2 + 1/4 + 1/8 = 7/8
...
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and it is easy to see that the numbers approach 1. So we say that

1/2 + 1/4 + 1/8 + 1/16 + · · · = 1.

There are very few natural looking series for which we can calculate the sum

exactly. We usually need to use other methods to show that the sums makes sense.

2 Euler’s series

Bernoulli studied several infinite series and demonstrated among other things the

convergence of the sum

1 +
1

4
+

1

9
+

1

16
+ · · ·

whose terms are the reciprocals of the perfect squares. But he was unable to deter-

mine the value of the sum. Let us calculate some partial sums and try to see the

pattern.

1 = 1

1 + 1/4 = 5/4

1 + 1/4 + 1/9 = 49/36

1 + 1/4 + 1/9 + 1/16 = 205/144
...

It is not easy to see a pattern and things get worse if we continue. It is highly

unlikely that there is any pattern that can be easily described: we shall see some

evidence for this later. How then can we show that the sum converges?

The simplest thing one can say about the partial sums is that they get larger

because we are adding a positive quantity each time. An increasing sequence can

do one of two things. It could increase without bound, eventually surpassing any

number we can write down. But if it is bounded; if it is trapped below some ceiling;

then it is forced to approach some number. It might not necessarily converge to the

ceiling we identified, but it will converge to something.

So if we can show that for each n,

1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
≤ 2

then we will know that the sum converges without knowing what it converges to

(although we will know that the sum is less than 2). I shall use mathematical

induction to show that, for each n,

1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
≤ 2− 1

n
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which is a bit stronger than what we want. At the moment you may not be able to

see why I chose 2 − 1
n

(or even the ceiling 2): once you see the argument you will

have a better chance to understand why.

Observe that if n = 1 then both sides of the inequality are equal to 1. We shall

show that if the inequality holds for any given n then it also holds for the next

number n + 1. Since it holds for n = 1 this ensures that it holds for n = 2 and then

n = 3 and so on. Now, if we know the inequality for n we have that the sum of n+1

terms satisfies

1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
+

1

(n + 1)2
≤ 2− 1

n
+

1

(n + 1)2
.

So it will be enough to show that

2− 1

n
+

1

(n + 1)2
≤ 2− 1

n + 1
.

This is the same as
1

(n + 1)2
≤ 1

n
− 1

n + 1

and the right side is 1
n(n+1)

which is indeed larger than the left side.

This argument shows that the infinite sum converges to something but it doesn’t

tell us what the sum is (merely that it’s less than 2). In about 1735 Euler stunned

the mathematical world by showing that

1 +
1

4
+

1

9
+

1

16
+ · · · = π2

6

which helps to explain why you can’t find a pattern to the partial sums.

Euler’s discovery is shocking but his argument was even more so. He began like

this. Consider the function x 7→ sin x. If you have seen some calculus you probably

know that the sine function can be written as an infinite sum

sin x = x− x3

6
+

x5

120
− · · · (1)

and so it looks a bit like a polynomial. If you haven’t seen calculus I will ask you to

accept this but here is a graph of y = sin x and of y = x − x3/6 + x5/120 showing

how similar they are.

There is a fundamental property of polynomials (which is not possessed by other

functions): namely, that if you know where a polynomial is equal to zero, you can

write the polynomial as a product of factors. If p is a polynomial of degree 3 which
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Figure 1: y = sin x and an approximation

equals zero at 0, 1 and 2 then p(x) is a constant multiple of x(x − 1)(x − 2). Now

we know that sin x vanishes at 0, ±π, ±2π and so on so it should be the case that

sin x = Ax(x− π)(x + π)(x− 2π)(x + 2π) . . . = Ax(x2 − π2)(x2 − 4π2) . . .

for some number A.

The problem with this is that each time we multiply by a further factor, we

change the polynomial dramatically. For example when x is fairly small, the factor

x2 − 9π2 is about −9π2 ≈ −90 so we make the polynomial much larger in size and

change the sign. So there is no hope that this product will approach sin x. Euler’s

solution was to write down a different product but with factors that vanish at the

same places:

Ax
(
1− x2/π2

) (
1− x2/(4π2)

) (
1− x2/(9π2)

)
. . .

Now the successive factors get closer to 1 so it looks as though the product might

approach something. In order to find out what should be the number A, imagine

expanding the product. That means you pick one term from each bracket and

multiply them together. If you pick the 1 from each bracket then the product is

Ax.1.1.1 . . . = Ax. So in order to get the first term of expression in (1) we need to

choose A = 1. So Euler guessed that

sin x = x
(
1− x2/π2

) (
1− x2/(4π2)

) (
1− x2/(9π2)

)
. . .

which we know from equation (1) is the same as

x− x3/6 + x5/120− · · · = x
(
1− x2/π2

) (
1− x2/(4π2)

) (
1− x2/(9π2)

)
. . .
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Now again imagine expanding the product but this time, choose an x2 term

from one of the brackets and 1 from each of the other brackets. You will get various

different terms: −x3/π2, −x3/(4π2), −x3/(9π2) and so on, depending upon which

bracket you choose the x2 term from. Putting them all together, you find that the

x3 term on the right side is

−x3

π2

(
1 +

1

4
+

1

9
+ · · ·

)

The x3 term on the left side is −x3/6 and, assuming that they must be the same,

we get Euler’s discovery

1 +
1

4
+

1

9
+ · · · = π2

6
.

To make this argument precise would be beyond the scope of these notes but

Euler’s idea can be implemented in a different way that uses less advanced math-

ematics. Instead of pretending that sin x looks like a polynomial we shall choose

a particular family of polynomials and apply Euler’s argument to them. If these

polynomials look like sin x then presumably whatever formula we derive will enable

us to show that

1 +
1

4
+

1

9
+

1

16
+ · · · = π2

6
.

But, not only do we get to choose which polynomials to use (so we can choose some

that work nicely), we don’t need to prove that they look like sin x. Just as long as

they do, they should give us a useful formula.

Before embarking on this plan, let’s collect together what Euler’s argument really

says. If we have a polynomial with zeroes at 0,±z1,±z2, . . . ,±zm then we can write

it in the form

Ax(1− x2/z2
1)(1− x2/z2

2) . . . (1− x2/z2
m).

If we also know that this polynomial is

Ax−Bx3 + Cx5 − · · ·

then we can conclude that

1

z2
1

+
1

z2
2

+ · · ·+ 1

z2
m

=
B

A
.

3 The Chebyshev polynomials

Recall that

cos 2θ = 2 cos2 θ − 1.
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This says that the function cos 2θ can be written as a polynomial function of cos θ.

If we set T2(x) = 2x2 − 1 then

cos 2θ = T2(cos θ).

In the same way we can use the addition formulae for cosine to write cos 3θ in terms

of cos θ.

cos 3θ = cos θ cos 2θ − sin θ sin 2θ

= cos θ(2 cos2 θ − 1)− sin θ(2 sin θ cos θ)

= 2 cos3 θ − cos θ − 2 cos θ(sin2 θ)

= 2 cos3 θ − cos θ − 2 cos θ(1− cos2 θ)

= 4 cos3 θ − 3 cos θ.

So if we define T3(x) = 4x3 − 3x we get T3(cos θ) = cos 3θ.

We can continue in this way to build up polynomials Tn which convert cos θ into

cos nθ. We missed out T1(x) which converts cos θ to itself: so T1(x) = x. These are

called the Chebyshev polynomials. In order to simplfy the process of calculating

them it is useful to have a general relationship. Note that

cos(n + 1)θ + cos(n− 1)θ = cos nθ cos θ − sin nθ sin θ + cos nθ cos θ + sin nθ sin θ

= 2 cos nθ cos θ.

Replacing cos θ by x we get

Tn+1(x) + Tn−1(x) = 2xTn(x).

This means we can write Tn+1 in terms of Tn and Tn−1:

Tn+1(x) = 2xTn(x)− Tn−1(x).

For example T3(x) = 2xT2(x) − T1(x) = 2x(2x2 − 1) − x = 4x3 − 3x. Now we

can calculate T4, T5 and so on:

T4(x) = 2x(4x3 − 3x)− (2x2 − 1) = 8x4 − 8x2 + 1

T5(x) = 2x(8x4 − 8x2 + 1)− (4x3 − 3x) = 16x5 − 20x3 + 5x.

Let’s draw a graph of T3(x) for x between −1 and 1 (see Fig. 2). The graph shows

that if −1 ≤ x ≤ 1 the image T3(x) also lies between −1 and 1. This is easy to
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Figure 2: y = T3(x)

understand from the formula T3(cos θ) = cos 3θ. If x is between −1 and 1 then it

is equal to cos θ for some θ between 0 and π. So T3(x) is equal to cos 3θ and this

number is between −1 and 1. We can also see that T3 has 3 zeroes in the interval.

We can find where these are by solving the equation 4x3 − 3x = 0:

4x3 − 3x = x(4x2 − 3) = 0

if x = 0 or x = ±√3/2. Notice that these numbers are cos π/2, cos π/6 and cos 5π/6.

To see why the zeroes have this form, let’s choose cos π/6 for example. If θ = π/6

then 3θ = π/2 and cos 3θ = cos π/2 = 0. This means that T3 is equal to zero at

cos π/6:

T3(cos π/6) = cos 3π/6 = cos π/2 = 0.

Similarly T3(cos π/2) = cos 3π/2 = 0 and T3(cos 5π/6) = cos 5π/2 = 0.

Now let’s look at T5 (see Fig. 3). Notice that this graph looks rather like the

graph of sin x but with a higher frequency. The polynomial vanishes at cos π/10,

cos 3π/10, cos 5π/10, cos 7π/10 and cos 9π/10 because, for example,

T5(cos π/10) = cos π/2 = 0.

For our purposes it will be more covenient to express these numbers in terms of sine

rather than cosine, using the fact that

cos x = sin(π/2− x).
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Figure 3: y = T5(x)

Note that the middle one is cos 5π/10 = cos π/2 = sin 0 which is zero. Similarly

cos 3π/10 = sin(π/2− 3π/10) = sin π/5 and cos π/10 = sin 2π/5. The other zeroes

cos 7π/10 and cos 9π/10 van be written as − sin π/5 and − sin 2π/5. If we copy

Euler’s argument for sine we can express T5 as a product:

T5(x) = Ax
(
1− x2/(sin2 π/5)

) (
1− x2/(sin2 2π/5)

)

for some number A. So we now have an exact formula

16x5 − 20x3 + 5x = Ax
(
1− x2/(sin2 π/5)

) (
1− x2/(sin2 2π/5)

)

and we can see by expanding the right side that A = 5. Now if we consider the x3

term in the equation

16x5 − 20x3 + 5x = 5x
(
1− x2/(sin2 π/5)

) (
1− x2/(sin2 2π/5)

)

we get

20 = 5

(
1

sin2 π/5
+

1

sin2 2π/5

)
.

So we deduce that
1

sin2 π/5
+

1

sin2 2π/5
= 4.

So, as we saw at the end of the last section, the sum of the reciprocals of the squares

of the zeroes that we want is the ratio 20/5 of the x3 and x coefficients in the

polynomial.
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We can continue in this way to get simple expressions for

1

sin2 π/7
+

1

sin2 2π/7
+

1

sin2 3π/7
1

sin2 π/9
+

1

sin2 2π/9
+

1

sin2 3π/9
+

1

sin2 4π/9
...

1

sin2 π/n
+

1

sin2 2π/n
+ · · ·+ 1

sin2 mπ/n

and so on, for each odd number n = 2m+1. In order to find out what those expres-

sions are we need to understand the x3 and x terms of the Chebyshev polynomials.

The following is a table of the terms of the first few polynomials:

T1 x

T2 −1 2x2

T3 −3x 4x3

T4 1 −8x2 8x4

T5 5x −20x3 16x5

T6 −1 18x2 −48x4 32x6

T7 −7x 56x3 −112x5 64x7

T8 1 −32x2 160x4 −256x6 128x8

T9 9x −120x3 432x5 −576x7 256x9

As you probably already spotted, the even numbered polynomials only involve even

powers of x and the odd numbered ones only odd powers of x. In each column

the non-zero coefficients alternate in sign as we move down the column. We are

interested in the odd numbered ones and it is easy to guess from the table that

the x coefficient of Tn is ±n if n is odd. In order to confirm this we can use the

recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x).

I leave this confirmation to the reader.

It is a bit more difficult to guess the formula for the x3 terms but with a bit of

trial and error you can come up with n(n2 − 1)/6 if n is odd. This can again be

confirmed using the recurrence relation. Once we have confirmed it we can calculate

the ratio of the x3 and x terms and we get (n2 − 1)/6. At that point we have

demonstrated the following formula: if n = 2m + 1 is an odd number then

m∑

k=1

1

sin2(kπ/n)
=

n2 − 1

6
.
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In some ways this formula may look even more remarkable than Euler’s although

I can’t say I feel that way. What is pretty clear is that we can deduce the value of

Euler’s series quite quickly from the new formula. If we divide both sides by n2 we

get
m∑

k=1

1

(n sin(kπ/n))2 =
n2 − 1

6n2
.

The right side approaches 1/6 as n gets larger so we need only show that the left

side approaches
∞∑
1

1

k2π2
=

1

π2
+

1

4π2
+ · · · .

For each value of k the expression n sin kπ/n approaches kπ as n gets larger. This

by itself is not quite enough to solve the problem because there are possible pitfalls

when dealing with infinite sums but in this case the pitfalls can be handled in a

straightforward way.
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