
SOME NOTES ON INEQUALITIES

NGOC MAI TRAN

Abstract. In each section of this note we investigate some useful inequalities,
with emphasis on how we can apply them to solving problems and intuition on

when to use what. Much of the materials are taken out of the excellent book

‘Cauchy-Schwarz Masterclass’ by Steele.

1. Cauchy-Schwarz inequality

This famous inequality comes in many forms (like all children of Cauchy are
called Cauchy - it’s impossible to tell on paper who’s the ’real’ one). So in this note
we will name this guy

a1b1 + a2b2 + . . .+ anbn ≤
√
a21 + a22 + . . .+ a2n

√
b21 + b22 + . . .+ b2n

where ai, bi ∈ R the Cauchy’s inequality for real numbers. Equality holds if and
only if ai = λbi for all i, for some λ > 0.

Of course this guy carries many ID cards to prove himself: here’s a proof (exercise
2. below). See Section 5 for hints to two other proofs.

1. Show that ab+ ac+ bc ≤ a2 + b2 + c2

2. Show that
∑n

i=1 |aibi| ≤
1
2

∑n
i=1 a

2
i + 1

2

∑n
i=1 b

2
i .

Now plug in a clever choice of a and b to obtain the Cauchy-Schwarz inequality.

In applying this inequality there are two major tricks: ”1”, and ”splitting”.

3. Show that for each real sequence a1, . . . , an, one has

a1 + a2 + . . .+ an ≤
√
n(a21 + . . .+ a2n)1/2

and
n∑

k=1

ak ≤ (

n∑
k=1

|ak|2/3)1/2(

n∑
k=1

|ak|4/3)1/2.

4. Show that for all x, y, z > 0, one has

(
x+ y

x+ y + z
)1/2 + (

x+ z

x+ y + z
)1/2 + (

y + z

x+ y + z
)1/2 ≤ 61/2

5. Show that for all x, y, z > 0, one has

x+ y + z ≤ 2{ x2

y + z
+

y2

x+ z
+

z2

x+ y
}.
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6. Show that for xyz 6= 0,

1

xy
+

1

xz
+

1

yz
≤ 1

x2
+

1

y2
+

1

z2
.

2. A bit of geometry: sum of squares and triangle inequality

You could think of Cauchy-Schwarz as a way to deal with products of sums of
squares (SOS). What about sums of SOS? Note the geometric interpretation of√
a21 + . . .+ a2n as the length of the vector (a1, . . . , an). Here the low-tech triangle

inequality can come to the rescue. Recall the triangle inquality: |AC| ≤ |AB|+|BC|
for triangle ABC. In vector form, this states√

(x1 + y1)2 + (x2 + y2)2 ≤
√
x21 + x22 +

√
y21 + y22

1. For x, y, z ≥ 0, show that (x+ y + z)
√

2 ≤
√
x2 + y2 +

√
y2 + z2 +

√
x2 + z2

2. For x, y, z ≥ 0, show that

√
3 ≤

√
x2 + y2 + z2 +

√
1

x2
+

1

y2
+

1

z2
.

3. Prove the triangle inequality using Cauchy-Schwarz inequality.

3. Conversion between sums and products

As hinted in the proof of problem 1, a close relative of Cauchy-Schwarz is the
arithmetic-geometric mean AM-GM inequality :

(a1a2 · · · an)1/n ≤ a1 + . . .+ an
n

for all a1, a2, . . . an ≥ 0. Equality holds if and only if the ai’s are all equal.

Here is the reason why this inequality is called AM-GM

1a. Show that among all rectangles with a given perimeter, the square has the
largest area.

1b. Show that among all boxes with a given surface area, the cube has the largest
volume.

The AM-GM inequality generalizes itself.

2. Let p1, p2, . . . , pn be nonnegative rational weights,
∑

i pi = 1. Show that the
‘general’ AM-GM

ap1

1 . . . apn
n ≤ p1a1 + . . .+ pnan

follow from the plain vanilla AM-GM.
However, even if you love vanilla, don’t underestimate the flavored AM-GM. It

grants us the splitting trick. The one thing you should remember is that AM-GM
is very useful when we want to convert a product into a sum.

3. Show that for x, y ≥ 0, x2011y + y2011x ≤ x2012 + y2012

4. Show that for x, y, z ≥ 0 1 ≤ xyz ⇒ 8 ≤ (1 + x)(1 + y)(1 + z).
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5. Show that for a, b, c > 0,

a+ b+ c ≤ a3

bc
+
b3

ac
+
c3

ab
.

When does equality hold?

6. For ak, bk ≥ 0, 1 ≤ k ≤ n, show that

(

n∏
k=1

ak)1/n + (

n∏
k=1

bk)1/n ≤ (

n∏
k=1

(ak + bk))1/n.

When does equality hold?

7. Show that for x, y, z > 0,

x2(y3 + z3) + y2(x3 + z3) + z2(x3 + y3) ≤ x(y4 + z4) + y(x4 + z4) + z(x4 + y4)

4. Convexity: the criminal behind the splitting trick

Many inequalities are derived by splitting 1 into a sum of nonnegative weights,
such as the AM-GM inequality and its cousin seen above. This is more than a
trick: it’s a crime, and the criminal responsible for the inequality is often a ‘convex’
function.

Definition: A function f : [a, b]→ R is convex if for all x, y ∈ [a, b] and 0 ≤ p ≤ 1,

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y).

(What does this mean geometrically?) Now, convex functions satisfy Jensen’s in-
equality :
If f : [a, b]→ R is a convex function, and pj are nonnegative numbers summing to
1, then for all xj ∈ [a, b], j = 1, . . . , n:

f(

n∑
j=1

pjxj) ≤
n∑

j=1

pjf(xj).

Equality holds when x1 = x2 = . . . = xn.
Here are some examples of important convex functions:

• The function x 7→ ex

• The function x 7→ xn for any n > 1
• The function x 7→ 1/sin(x)

Functions where the inequality goes ’the other way’, that is, f(px + (1 − p)y) ≥
pf(x) + (1− p)f(y) are called concave functions. Check that if f is concave, then
1/f is convex. This can be helpful in many inequalities with fractions.

1. Show that if x > 1, then

1

x− 1
+

1

x
+

1

x+ 1
>

3

x

2. Show that if x, y, z > 0, x+ y + z = 1, then

64 ≤ (1 +
1

x
)(1 +

1

y
)(1 +

1

z
)

3. Prove the AM-GM inequality using Jensen’s inequality.
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4. Let a, b, c be the sides of a triangle, A be its area. Show that

a2 + b2 + c2 ≥ 4√
3
A

When does equality hold?

5. Show that for a1, a2, a3, a4 > 0, one has

2 ≤ a1
a2 + a3

+
a2

a3 + a4
+

a3
a4 + a1

+
a4

a1 + a2

5. Appendix: Proofs of inequalities introduced

Fill out the details of some main proofs below.

Proof of Cauchy-Schwarz inequality for real numbers.

(1) Induction. The case n = 2: square both sides and rearrange. For the
induction step: split sum to two pieces, then apply the inequality.

(2) Geometry. (If you know about vector space and inner products): rewrite
as an inequality involving inner products. Now use 〈u− v, u− v〉 ≥ 0, and
plug in u = a/‖a‖, v = b/‖b‖. (How is this related to the proof hinted in
problem 1?

Proof of the AM-GM inequality

(1) Induction. Prove by induction on n = 2k. For 2k < n < 2k+1, padd the
original sequence with A = a1+...an

n and reduce to the case n = 2k+1.
(2) Polya’s dream. Use the fact that the function x 7→ ex is convex. According

to the book by Steele, Polya discovered this proof in a dream and reported
it as the best mathematics he had ever dreamt.

Proof of Jensen’s inequality: induction.


