
Berkeley Math Circle
Monthly Contest 7 – Solutions

1. Prove that
1 · 1! + 2 · 2! + · · ·+ n · n! = (n+ 1)!− 1

for all positive integers n.

Solution.

1 · 1! + 2 · 2! + · · ·+ n · n!
= (2− 1) · 1! + (3− 1) · 2! + · · ·+ [(n+ 1)− n] · n!
= (2 · 1!− 1!) + (3 · 2!− 2!) + · · ·+ [(n+ 1) · n!− n!]

= (2!− 1!) + (3!− 2!) + · · ·+ [(n+ 1)!− n!]

When we add together the factorials in the last row, all terms cancel except for the −1! at the beginning and the (n+ 1)! at the
end, so the sum is (n+ 1)!− 1.

Remark. This problem can also be solved using the method of mathematical induction.

2. Do there exist four consecutive positive integers whose product is a perfect square?

Solution. The answer is no. If x ≥ 1 is an integer,

x(x+ 1)(x+ 2)(x+ 3)

= [x(x+ 3)] · [(x+ 1)(x+ 2)]

= [x2 + 3x] · [x2 + 3x+ 2]

= [(x2 + 3x+ 1)− 1] · [(x2 + 3x+ 1) + 1]

= (x2 + 3x+ 1)2 − 1.

Therefore the product of four consecutive positive integers is always one less than a square, and therefore cannot be a square
since two positive squares cannot differ by 1.

3. Fix a positive integer n. Two players, Phil and Ellie, play the following game. First, Phil fills the squares of an n×n chessboard
with nonnegative integers less than n. Then, Ellie chooses three squares making an L, as in any of the following pictures:

Ellie adds 1 to each of the three squares making the L, except that if the number n appears in a square, it is immediately
replaced by 0. Ellie wins if, after modifying finitely many L’s in this way, she can change all the numbers on the board into 0’s;
otherwise Phil wins.

Which player has a winning strategy if

(a) n = 12?

(b) n = 2012?

Solution. (a) Phil wins in this case. Consider the sum of all the numbers on the board. If Ellie adds 1 to three squares making
an L, the sum increases by 3, and when a 12 is replaced by a 0, the sum decreases by 12. So the sum always increases
and decreases by multiples of 3. So if Phil ensures that the initial sum is not a multiple of 3 (e.g. by putting a 1 in one
square and 0’s in all the others), then Ellie will never be able to make the sum 0.

(b) Ellie wins in this case. Consider four squares making a 2× 2 square:

a b

c d
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Suppose that Ellie chooses each of the L’s {b, a, c}, {a, b, d}, {a, c, d} 671 times and the L {b, d, c} 670 times. Then each
of the squares b, c, d will be incremented exactly 2012 times, and so their values will remain the same after the operation.
However, the square a will be incremented 2013 times; thus its value will be increased by 1 or, if it was initially 2011,
replaced by 0. In a similar manner, Ellie can increment the value of any single square on the board and thus change all
the numbers to 0’s.

4. For a positive integer n, let f(n) be the number of divisors of n which are perfect squares, and let g(n) be the number of
divisors of n which are perfect cubes. Determine whether there exists an integer n such that

f(n)

g(n)
= 2012.

Solution. If n has the prime factorization
n = pe11 pe22 · · · p

ek
k ,

then the divisors of n which are perfect squares are the numbers of the form

p2a1
1 p2a2

2 · · · p2ak

k

where each ai is an integer such that 0 ≤ ai ≤ ei/2. There are bei/2c+ 1 such integers, and we conclude that

f(n) =
(⌊e1

2

⌋
+ 1
)(⌊e2

2

⌋
+ 1
)
· · ·
(⌊ek

2

⌋
+ 1
)
.

By the same argument we find that

g(n) =
(⌊e1

3

⌋
+ 1
)(⌊e2

3

⌋
+ 1
)
· · ·
(⌊ek

3

⌋
+ 1
)
,

and thus the problem reduces to writing 2012 as a product of factors of the form

bx/2c+ 1

bx/3c+ 1

for various positive integers x. Taking x = 2(2012 − 1) gives a fraction whose numerator is 2012, and this procedure can be
applied iteratively:

2012 =
2012

1341
· 1341
894

· 894
596
· 596
397
· 397
265
· 265
177
· 177
118
· 118
79
· 79
53
· 53
35
· 35
23
· 23
15
· 15
10
· 10
7
· 7
5
· 5
3
· 3
2
· 2
1
=

f(n)

g(n)

where n = 24022 · 32680 · 51786 · 71190 · 11792 · 13528 · 17352 · 19234 · 23156 · 29104 · 3168 · 3744 · 4128 · 4318 · 4712 · 538 · 594 · 612.

5. Let ABC be a triangle with incenter I . The circumcircle of4AIB meets the lines CA and CB again at P (different from A)
and Q (different from B) respectively. Prove that A, B, P , and Q are (in some order) the vertices of a trapezoid.

Solution. Let ω and k be the circumcircles of4ABC and4AIB respectively, and let CI meet k again at M . Computing the
angles of4AIM shows that it is isosceles with MA = MI . Similarly MB = MI . Therefore M is the center of k.

Assume for the moment that CA 6= CB. Consider reflection about the line CI , which fixes k and interchanges CA with CB.
This reflection must take A to a point on both CB and k, but it cannot take A to B since CA 6= CB, so it must take A to Q.
Similarly B reflects to P . Therefore AQ ‖ BP since both are perpendicular to the line CI of reflection, and thus APBQ is a
trapezoid.

Now assume that CA = CB. Then CM is a diameter of ω, so ∠CAM = 90 and CA is tangent to k, which is inconsistent
with the existence of P .

6. Determine all positive integers n such that there exist n distinct three-element subsets A1, A2, . . . , An of the set {1, 2, . . . , n}
such that |Ai ∩Aj | 6= 1 for all i and j, 1 ≤ i < j ≤ n.

Solution. The answer is all multiples of 4.

We will prove the following stronger statement by induction: Suppose that m distinct three-element subsets A1, A2, . . . , Am

of an n-element set are given, no two having a one-element intersection. Then m cannot exceed n, and m can only equal n if
4|n.
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We will induct (using “strong induction”) on n, letting m vary freely subject to the condition that m ≥ n. The cases 0 ≤ n ≤ 3
are not hard to see.

Assume WLOG that A1 = {1, 2, 3}. In our first case we assume that none of the other sets A2, . . . , An intersect A1. In this
case we can remove A1 and the three elements 1, 2, 3, thus decreasing n by 1 and m by 3 and getting a contradiction from the
induction hypothesis.

So we assume that some other set does intersect A1, WLOG A2 = {1, 2, 4} (the intersection must have size 2). Any set Ai

that intersects A1 does so in two elements and consequently intersects A2, which in turn implies |Ai ∩ A2| = 2. Conversely
any set that intersects A2 must intersect A1. These conditions are fulfilled only by two types of sets:

(a) {1, 2, x}, x /∈ {1, 2, 3, 4};
(b) {1, 3, 4} and {2, 3, 4}.

It is clear that sets in categories (a) and (b) cannot coexist. First assume that there are none in category (b), so all the sets
containing 1 or 2 are (after renaming elements) {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, . . . , {1, 2, k} for some k ≥ 4. No other set can
contain any of the elements 1, 2, . . . , k, for then it would contain 1 or 2. Now we remove these k elements and the k − 2 sets
containing them, and once again the induction hypothesis gives us a contradiction.

Finally we assume that one of the category (b) sets, say {1, 3, 4}, belongs to the collection of Ai’s. Then it is easy to see that
no other Ai, with the possible exception of {2, 3, 4}, can contain 1, 2, 3, or 4. We may assume that, in fact, {2, 3, 4} is one of
the given sets; including it will only make m larger. We then remove the four elements 1, 2, 3, 4 and the four sets composed of
them. We deduce that n− 4 = m− 4 and 4|(n− 4), from which it follows that n = m and 4|n.

As our proof shows, a family of sets satisfying the conditions can be found for each multiple of 4 by partitioning the n elements
into four-element blocks and including all the three-element subsets of each four-element block.

7. Consider the function

f(x) =
(x− 2)(x+ 1)(2x− 1)

x(x− 1)
.

Suppose that u and v are real numbers such that
f(u) = f(v).

Suppose that u is rational. Prove that v is rational.

Solution. It is not hard to see that (for all real x except 0 and 1)

f(1− x) = −f(x) and f

(
1

x

)
= −f(x).

Therefore

f(x) = f

(
1

1− x

)
= f

(
1− 1

x

)
.

If u ∈ Q is given, then v = u, v = 1/(1 − u), and v = 1 − 1/u are three rational solutions to the equation f(u) = f(v).
Moreover, they are all distinct; setting any two equal yields a quadratic with the nonreal solutions u = (1±

√
−3)/2. However,

the equation f(u) = f(v), when expanded as a polynomial in v,

f(u) · v(v − 1) = (v − 2)(v + 1)(2v − 1),

has degree 3. Therefore v cannot have any more than these three possible values.
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