
Berkeley Math Circle
Monthly Contest 5 – Solutions

1. Each vertex of a cube is labeled with an integer. Prove that there exist four coplanar vertices the sum of whose numbers is even.
Solution. Label the vertices of the cube as shown. The quadruples of vertices

a and b and c and d

a and b and e and f

c and d and e and f

are all coplanar. Assume that all three quadruples have an odd sum; then the sum of all twelve terms is
odd. But these twelve terms add to

(a+ b+ c+ d) + (a+ b+ e+ f) + (c+ d+ e+ f)

= 2(a+ b+ c+ d+ e+ f),

an even number. Contradiction!
a b

c d
e f

g h
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2. A 2012× 2012 table is to be filled with integers in such a way that each of the 4026 rows, columns, and main diagonals has a
different sum. What is the smallest number of distinct values that must be used in the table?

Solution. Answer: 3.

If at most two numbers are used, say x and y, the sum of every row and column is completely determined by the number of
y’s it has, which ranges from 0 to 2012. Thus there are only 2013 possible sums, not enough for the 4026 rows, columns, and
diagonals.

On the other hand, if n is a large integer (say, 10000), then it is possible to fill the table using 0, 1, and n. Here is a 6 × 6
example that generalizes readily:

1 0 0 0 0 0
1 1 0 0 0 n
1 1 1 0 n n
1 1 0 n n n
1 0 0 0 n n
0 0 0 0 0 n

3. Let x, y, and z be real numbers.

(a) Prove that
x+ y > |x− y|

if and only if x and y are both positive.
Solution. Note that |x− y| is the greater of x− y and −(x− y). So the above assertion is equivalent to

x+ y > x− y and x+ y > −x+ y

2y > 0 and 2x > 0

y > 0 and x > 0.

(b) Find an inequality involving the variables x, y, and z, using only the operations of addition, subtraction, multiplication
and absolute value, that is true if and only if x, y, and z are all positive.
Solution 1. The quantity

x+ |x|

is 2x, a positive number, if x > 0 and is 0 otherwise. Therefore the inequality

(x+ |x|)(y + |y|)(z + |z|) > 0

holds if and only if x, y, and z are all positive.
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Solution 2. By part (a), the condition that x, y, and z are all positive is equivalent to

x+ y − |x− y| > 0 and z > 0.

By part (a) again, this is equivalent to

x+ y − |x− y|+ z >
∣∣x+ y − |x− y| − z

∣∣.
This inequality involves no multiplication.

4. The tangents at A and B to the circumcircle of an acute triangle ABC intersect at T . Point D lies on line BC such that
DA = DC. Prove that TD ‖ AC.

Solution. Using the properties of tangent lines and chords, we have

∠TAB = ∠ACB = ∠ABT = α.

Moreover,4DAC is isosceles so ∠DAC = α as well. Now triangles TAB and DAC are similar, so

AT

AB
=
AD

AC
and ∠TAD = ∠BAC,

implying that triangles TAD and BAC are similar. Therefore

∠ADT = ∠ACB = α = ∠DAC,

so TD ‖ AC.

5. A grasshopper begins at the vertex (1, 0) of an infinite lattice with origin O(0, 0). It can jump from a point A to any lattice
point B such that4OAB has area 1/2.

(a) Find all points (x, y) of the lattice which the grasshopper can reach.

(b) Prove that if the grasshopper can reach a point (x, y), then it can reach it in at most |y|+ 2 jumps, starting from (1, 0).

Solution. The answer to part (a) is all pairs (x, y) of integers that are relatively prime.

If a point X has coordinates with a common factor, say (ku, kv), then there exists a lattice point M(u, v) on the segment OX .
Then for any lattice pointA, the area of4OAX is not 1/2 because it is k times the area of4OAM . Therefore the grasshopper
can never reach such a point X .

We will now prove that if x and y are relatively prime and nonnegative, then the grasshopper can reach (x, y) in at most y steps.
As base cases, we note that can reach (1, 0) in zero jumps and any point of the form (x, 1), x ∈ Z, in one jump. We continue
by (strong) induction on y. We distinguish two cases for a given pair (x, y):

(1) If y > x, then by the induction hypothesis, (y, x) is attainable in at most x steps. We jump first from (1, 0) to (0, 1) and
then apply the moves from (1, 0) to (y, x) in reflected fashion. We get a solution using at most x+ 1 ≤ y steps.

(2) If y < x (note that y cannot equal x if y ≥ 2) then we consider the transformation of the plane sending a general point
(u, v) of the plane to (u − v, v). This sends (1, 0) to itself, lattice points to lattice points, and lines to lines, and in fact it
preserves the areas of triangles (this can be seen using either Pick’s formula or the determinant formula for the area of a
coordinate triangle). So (x, y) is attainable in a given number of steps if and only if (x− y, y) is. We continue subtracting
y from the x-coordinate until it is less than y (of course it will still be relatively prime to y), and then we apply the previous
case.

The points (x, y) where y < 0 and x ≥ 0 can be dealt with symmetrically. Finally, if x is negative, we jump from (1, 0) to
(0, 1) to (−1, 0), making two moves, and apply at most |y| moves to get from (−1, 0) to (x, y).

6. Determine whether there exist two distinct finite subsets A and B of the reals such that for every polynomial f of degree 2012
with real coefficients, ∑

x∈A
f(x) =

∑
x∈B

f(x).
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Solution. We will prove by induction on n ≥ 0 that there exist distinct sets An and Bn satisfying the desired equality∑
x∈An

f(x) =
∑
x∈Bn

f(x) (1)

for all polynomials f of degree at most n.

The base case is n = 0; we take A = {0} and B = {1}. Now we suppose An−1 and Bn−1, n ≥ 1, to be constructed and
define

An = An−1 ∪ (Bn−1 + t)

Bn = Bn−1 ∪ (An−1 + t)

where the parameter t of the translations is a real number large enough that the unions are actually disjoint unions. Now the
condition (1) becomes ∑

x∈An−1

f(x) +
∑

x∈Bn−1

f(x+ t) =
∑

x∈Bn−1

f(x) +
∑

x∈An−1

f(x+ t)

∑
x∈An−1

[f(x)− f(x+ t)] =
∑

x∈Bn−1

[f(x)− f(x+ t)].

If f(x) has degree at most n, then the polynomial g(x) = f(x)− f(x+ t) has degree at most n− 1 since the leading terms of
f(x) and f(x+ t) are identical. Thus this last condition holds by the induction hypothesis.

7. Find all primes p such that there exist integers a, b, c, and k satisfying the equations

a2 + b2 + c2 = p

a4 + b4 + c4 = kp.

Solution. The answers are 2 and 3. It is clear that for them we can use the values a = b = k = 1 and c = 0 or 1 respectively.

Assume p ≥ 5. Subtracting twice the second equation from the square of the first, we find that p divides

2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4,

an expression which factors as
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c).

One of the four factors must be divisible by p. By flipping the signs on a, b, and c, we can assume it is the first one. Using the
inequality x2 − x ≥ 0 (for integers x, equality holding at x = 0 and x = 1), we have

p ≤ a+ b+ c ≤ a2 + b2 + c2 = p.

This equality condition can only hold if a, b, and c are each equal to their squares, implying that they are at most 1 and
p ≤ 1 + 1 + 1 = 3.
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