
Berkeley Math Circle
Monthly Contest 3 – Solutions

1. Let a and b be integers such that
|a+ b| > |1 + ab|.

Prove that ab = 0.

Solution. Notice that replacing both a and b by their negatives does not change either side of the given inequality. Therefore,
we may assume that a+ b ≥ 0. We now have a+ b > |1 + ab|, so

a+ b > 1 + ab and a+ b > −1− ab
ab− a− b+ 1 < 0 and ab+ a+ b+ 1 > 0

(a− 1)(b− 1) < 0 and (a+ 1)(b+ 1) > 0.

If a and b are nonzero, then a − 1 and a + 1 are both nonnegative or both nonpositive, and similarly for b − 1 and b + 1. So
(a− 1)(b− 1) and (a+ 1)(b+ 1) are both nonnegative or both nonpositive, which contradicts the information above.

Remark. A longer, but easier to find, proof may be constructed by separately considering the four cases according to whether
a and b are positive or negative.

2. Let p be a prime number. Find all possible values of the remain-
der when p2 − 1 is divided by 12.

Solution. The answers are 3, 8, and 0.
It is clear that p = 2 gives 3, p = 3 gives 8, and p = 5 gives
0. We claim that all primes p ≥ 5 give the remainder 0 as well,
i.e. that p2 − 1 is divisible by 12 for these p.
We factor:

p2 − 1 = (p+ 1)(p− 1)

Since p 6= 2, p is odd and so p + 1 and p − 1 are both even.
This gives two factors of 2 in p2−1. Moreover, one of the three
consecutive integers p− 1, p, p+ 1 is divisible by 3, and since
p 6= 3, it is not p. So either p− 1 or p+ 1 has a factor of 3, and
so does p2 − 1. Thus p2 − 1 is divisible by 2 · 2 · 3 = 12.

3. We are given a 13 × 13 chessboard. Determine whether it is
possible to place nonoverlapping 1 × 4 rectangular tiles on the
board so as to cover every square but the central one.

Solution. It is impossible. In the diagram at right, each of the
42 tiles used to cover the 168 vacant squares must cover exactly
one ×. But there are only 41 ×’s!
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4. Let ABCD be a parallelogram. Suppose that the circumcenter of4ABC lies on diagonal BD. Prove that ABCD is either a
rectangle or a rhombus (or both).

Solution. To get a conclusion of the appropriate type (a rectangle OR a rhombus), we must divide up the problem into two
cases. Here is one way of accomplishing this:

Case 1. The circumcenter O of ABC is the center of ABCD, the common midpoint of diagonals AC and BD. Then since
radii OA and OB are equal, we get AC = 2OA = 2OB = BD. Thus ABCD is a parallelogram whose diagonals are
congruent, i.e. a rectangle.

Case 2. The circumcenter O of ABC does not coincide with the midpoint M of AC and BD. Then since O is on the
perpendicular bisector of AC, we have OM⊥AC. But O and M are both on line BD, so BD⊥AC. Thus ABCD is a
parallelogram whose diagonals are perpendicular, i.e. a rhombus.
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5. Let 	 be an operation on the set of real numbers such that

(x	 y) + (y 	 z) + (z 	 x) = 0

for all real x, y, and z. Prove that there is a function f : R→ R such that

x	 y = f(x)− f(y)

for all real x and y.

Solution. First we plug in x = y = z = 0 to get

(0	 0) + (0	 0) + (0	 0) = 0,

that is, 0	 0 = 0. Then we plug y = z = 0, keeping x undetermined, into the original equation to get

(x	 0) + 0 + (0	 x) + 0 = 0.

So 0	 x = −(x	 0). Define g(x) = x	 0. Plugging z = 0 into the original equation gives

(x	 y) + (y 	 0) + (0	 x) = 0

(x	 y) + (y 	 0)− (x	 0) = 0

(x	 y) = (x	 0)− (y 	 0)

= g(x)− g(y),

as desired.

6. Let N be a positive integer such that N is divisible by 81 and the number formed by reversing the digits of N is also divisible
by 81. Prove that the sum of the digits of N is divisible by 81.

Solution. We begin with a lemma.

Lemma. For all k ≥ 0, 10k ≡ 1 + 9k mod 81.

Proof. Binomial theorem:

10k = (1 + 9)k = 1k +

(
k

1

)
· 1k−1 · 9 + terms divisible by 92.

We now write N in terms of its digits as

N = a0 + 10a1 + · · ·+ 10nan

≡ (a0 + 9 · 0 · a0) + (a1 + 9 · 1 · a1) + · · ·+ (an + 9 · n · an)
≡ a0 + a1 + · · ·+ an + 9(0a0 + 1a1 + 2a2 + · · ·+ nan) mod 81.

Correspondingly, the number formed by reversing the digits of N is

an + 10an−1 + · · ·+ 10na0 ≡ a0 + a1 + · · ·+ an + 9(na0 + (n− 1)a1 + · · ·+ 0an) mod 81.

If we add these two numbers, we get that 81 divides

2(a0 + · · ·+ an) + 9(na0 + na1 + · · ·+ nan) = (9n+ 2)(a0 + · · ·+ an).

Since 9n+ 2 is not divisible by 3, the conclusion follows.
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7. Let k be a positive integer, and let (a1, a2, . . . , a2k) and (b1, b2, . . . , b2k) be two sequences of real numbers such that 1/2 ≤
a1 ≤ · · · ≤ a2k and 1/2 ≤ b1 ≤ · · · ≤ b2k. Let M and m be the maximum and minimum respectively of

(a1 + c1)(a2 + c2) · · · (a2k + c2k) (1)

as (c1, . . . , c2k) ranges through all possible permutations of (b1, . . . , bk). Prove that

M −m ≥ k(ak − ak+1)(bk − bk+1).

Solution. Let ci = bσ(i) where σ is a permutation of the numbers 1 through 2k that will vary. We begin with σ being the
numbers 1 through 2k written in order,

1 2 · · · 2k,

so ci = bi for each i. We then switch 1 with 2, 1 with 3, 1 with 4, and so on, until 1 arrives to the right of 2k. Then we switch 2
with 3, 2 with 4, etc., until 2 is just to the left of 1. We continue in this way until the order of all the numbers σ(i) is reversed.
Each of these switches changes the permutation σ and therefore the product (1). We claim that after all of them have been
performed, the value of (1) is increased by at least k(ak − ak+1)(bk − bk+1).

Lemma. No switch decreases the value of (1).

Proof. Each switch interchanges the values of two consecutive ci’s, replacing two factors (ai+ ci)(ai+1+ ci+1) of the product
by (ai + ci+1)(ai+1 + ci) and increasing the value by a positive constant times

(ai + ci+1)(ai+1 + ci)− (ai + ci)(ai+1 + ci+1) = (ai+1 − ai)(ci+1 − ci).

The factor (ai+1 − ai) is obviously nonnegative, and the factor (ci+1 − ci) is nonnegative also due to the way we performed
the switches: a smaller number always moves to the right while a larger number moves to the left, so ci = bm and ci+1 = bn
with m < n.

Lemma. At least k switches occur between ck and ck+1 in which initially σ(k) ≤ k and σ(k+1) > k (and subsequently these
inequalities are reversed).

Proof. Let m(σ) be the number of indices i such that i ≤ k and σ(i) ≤ k. Initially, m(σ) = k and ultimately m(σ) = 0. Only
switches of the type described alter m(σ), and only by 1, so there must be at least k of them (in fact there are exactly k).

We complete the proof by showing that each switch of the type described in the above lemma increases the value of (1) by at
least (ak − ak+1)(bk − bk+1). By the calculation in Lemma 7, the product of the two factors altered by the switch is increased
by

(ai+1 − ai)(ci+1 − ci) ≥ (ak+1 − ak)(bk − bk+1);

the remaining factors all have the form

ai + ci ≥
1

2
+

1

2
= 1,

so the increase in the product is at least (ak − ak+1)(bk − bk+1).
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