
Berkeley Math Circle
Monthly Contest 2 – Solutions

1. Find the number of multiples of 3 which have six digits, none of which is greater than 5.

Solution. The first digit can be any number from 1 to 5, making 5 possibilities. Each of the succeeding digits, from the ten-
thousands digit to the tens digit, can be any of the six digits from 0 to 5. Finally, we claim that there are exactly two possibilities
for the last digit. Given the first five digits, if we append the digits 0, 1, and 2 in turn, we get three consecutive integers, exactly
one of which is a multiple of 3. The same happens when we add the digits 3, 4, and 5.

Thus the total number of multiples of 3 is 5 · 6 · 6 · 6 · 6 · 2 = 12960.

2. On an infinite chessboard, two squares are said to touch if they share at least one vertex and they are not the same square.
Suppose that the squares are colored black and white such that

• there is at least one square of each color;

• each black square touches exactly m black squares;

• each white square touches exactly n white squares

where m and n are integers. Must m and n be equal?

Solution. The answer is no. There are many tilings to demonstrate this; one of the simplest is to divide the board into horizontal
stripes and color every third stripe black. In this tiling, m = 2 and n = 5.

3. Is there an integer x such that

2010 + 2009x+ 2008x2 + 2007x3 + · · ·+ 2x2008 + x2009 = 0?

Solution. The answer is no.

It is clear that if x is positive, the left side is positive, and if x = 0, the left side is 2010. If x = −1, the left side is

(2010− 2009) + (2008− 2007) + · · ·+ (2− 1) = 1 + 1 + · · ·+ 1,

likewise a positive number.

If x ≤ −2, we claim that the left side is negative. Pair the terms again and factor:

(2010 + 2009x) + x2(2008 + 2007x) + · · ·+ x2006(4 + 3x) + x2008(2 + x).

Each of the binomials in parentheses has the form (a+ 1) + ax, with a ≥ 1, and its value is at most

(a+ 1) + a(−2) = 1− a ≤ 0.

Moreover, only the last binomial, for a = 1, is capable of equaling 0; the others are strictly negative. The coefficients 1, x2,
x4, etc. of these binomials are of course positive, yielding a negative sum.

4. Let ABCD be a convex quadrilateral such that ∠ABD = ∠ACD. Prove that ABCD can be inscribed in a circle.

Solution. There are many ways to structure the proof. The following method seems to have minimal logical difficulties.

Because points A, B, and C are not collinear, we can draw the circumscribed circle ω of 4ABC. The arc AC of ω, not
containing B, is intercepted by inscribed angle ABC and thus has measure 2∠ABC. On this arc we may find a point E such
that AE_ has the smaller measure 2∠ABD. Then angles ABD and ABE have the same measure and orientation, so E is on
BD; also, angles ACD and ACE have the same measure and orientation, so E is on CD. Since lines BD and CD have only
one point in common, D = E and thus D lies on the circle.

5. Let n > 3 be a positive integer. Define an integer k to be snug if 1 ≤ k < n and

gcd(k, n) = gcd(k + 1, n).

Prove that the product of all snug integers is congruent to 1 modulo n.

Remark. If there are no snug integers, their product is vacuously declared to equal 1.
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Solution. Let k be a snug integer. Note that any factor that divides n, k, and k + 1 must also divide (k + 1)− k = 1, so

gcd(k, n) = gcd(k + 1, n) = 1.

In particular, k has a multiplicative inverse h mod n (we can choose h such that 0 < h < n). We claim that h is also snug.
Clearly gcd(h, n) = 1; note that

(h+ 1) · k = hk + k ≡ k + 1 mod n;

since k and k + 1 are invertible mod n, so is h+ 1.
Thus we can pair up snug residues mod n into pairs with product 1, unless there is a snug k that is its own multiplicative
inverse. We claim that there is no such k except possibly k = 1. Indeed, if k2 ≡ 1 mod n, then n divides

k2 − 1 = (k + 1)(k − 1).

Since k is snug, n is relatively prime to k + 1 and hence divides k − 1, implying that k = 1.

6. Let ABCD be a convex quadrilateral. Suppose that the area of ABCD is equal to

AB + CD

2
· AD +BC

2
.

Prove that ABCD is a rectangle.
Solution. In the picture shown, we have replicated quadrilateral ABCD four times, rotating
by 180◦ successively about the midpoints of BC, CF , and CH . Because the angles of the
quadrilateral sum to 360◦, the figure “closes up” so that the final quadrilateral has CD as a side
and would, if further rotated 180◦ about CD, coincide with ABCD.
We note that AD and EF are parallel and congruent, as are FG and DI; thus triangles ADI
and EFG are translations of one another, and AI is parallel and and congruent to IG. The
same can be said for triangles ABE and IHG. So

4 ·AreaABCD = AreaABEFGHID = AreaABEGHI = AreaAEGI.
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Because AEGI is a parallelogram, with base AE and height at most AI , we can continue:

AreaAEGI ≤ AE ·AI ≤ (AB +BE)(AD +DI) = (AB + CD)(AD +BC) = 4AreaABCD.

All these inequalities must be equalities. So A, B, E are collinear (i.e. AB ‖ CD); A, D, I are collinear (i.e. AD ‖ BC); and
angle EAI , which is also angle BAD, equals 90◦. From this we conclude that ABCD is a rectangle.

7. Let N be a positive integer. Define a sequence an, n ≥ 0, by

a0 = 0, a1 = 1, an+1 + an−1 = an

(
2− 1

N

)
(n ≥ 1).

Prove that an <
√
N + 1 for all n ≥ 0.

Solution.

Lemma. For all n ≥ 0, an and an+1 are related by a quadratic equation, namely

a2n+1 + a2n −
(
2− 1

N

)
anan+1 = 1. (1)

Proof. By induction. The case n = 0 is obvious. Suppose that for some n ≥ 0, (1) holds. Then

a2n+2 + a2n+1 −
(
2− 1

N

)
an+1an+2 = a2n+1 −

[(
2− 1

N

)
an+1 − an+2

]
an+2

= a2n+1 − anan+2

= a2n+1 −
[(

2− 1

N

)
an+1 − an

]
an

= a2n+1 + a2n −
(
2− 1

N

)
anan+1

= 1.
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If an is treated as a constant, equation (1), the quadratic

a2n+1 −
(
2− 1

N

)
anan+1 + (a2n − 1) = 0

must have at least one real root an+1, so its discriminant is nonnegative:(
2− 1

N

)2

a2n ≥ 4 · 1 · (a2n − 1)((
2− 1

N

)2

− 4

)
a2n ≥ −4(

−4N + 1

N2

)
a2n ≥ −4

a2n ≤
4N2

4N − 1
.

Thus it suffices to show that

4N2

4N − 1
< N + 1

4N2 < (N + 1)(4N − 1) = 4N2 + 3N − 1

1 < 3N,

which is true.
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