
Berkeley Math Circle
Monthly Contest 1 – Solutions

1. Let x be an odd positive integer other than 1. Prove that one can find positive integers y and z such that

x2 + y2 = z2.

Solution. Let

y =
x2 − 1

2
and z =

x2 + 1

2
.

Because x is odd, x2 − 1 and x2 + 1 are both even and therefore y and z are integers. Moreover, because x is more than 1,
x2 − 1 and x2 + 1 are more than 0 and thus y and z are positive. Finally, the desired equation x2 + y2 = z2 is equivalent to

x2 +

(
x2 − 1

2

)2

=

(
x2 + 1

2

)2

x2 +
(x2 − 1)2

4
=

(x2 + 1)2

4

4x2 + (x2 − 1)2 = (x2 + 1)2

4x2 + x4 − 2x2 + 1 = x4 + 2x2 + 1,

which is true.

2. A finite number of points are drawn in the plane. Prove that one can select two of them, A and B, such that:

(a) A and B are not the same point.

(b) No drawn point, other than A itself, is closer to A than B is.

(c) No drawn point, other than B itself, is closer to B than A is.

Solution. Consider all the distances XY between two different drawn points. Since a finite number of points are drawn, there
are only finitely many distances, and one of them, say d, is minimal. LetA andB be two of the drawn points such thatAB = d.
Now, by definition, A and B are not the same point. To verify part (b), let C be any drawn point other than A and B. Then
AC ≥ d = AB, so C is not closer to A than B is. The verification of part (c) is similar.

3. The number 2011 is written on a blackboard. It is permitted to transform the numbers on it by two types of moves:

(a) Given a number n, we can erase n and write two nonnegative integers a and b such that a+ b = n.

(b) Given two numbers a and b, we can erase them and write their difference a− b, assuming this is positive or 0.

Is it possible that after a sequence of such moves, there is only one number on the blackboard and it is 0?

Solution. The answer is no.

We claim that the sum of the numbers on the blackboard is always odd. Indeed, the initial sum, 2011, is odd, and when a move
of type (a) is performed, the sum does not change. When a move of type (b) is performed, the sum decreases by

(a+ b)− (a− b) = 2b,

an even number. Since odd− even = odd, the sum will remain odd. Thus the desired final state, in which the sum (0) is even,
is not achievable.

4. Let X , Y , and Z be points on one side of a line AB such that

4XAB ∼ 4BY A ∼ 4ABZ.

Prove that4XY Z is similar to all these triangles.

1



Solution. We will prove that 4XY Z ∼ 4XAB. Because ∠AXB = ∠Y XZ if and
only if ∠AXY = ∠BXZ and

ZX

BX
=
Y X

AX
if and only if

ZX

YX
=
BX

AX
,

this is the same as proving4XAY ∼ 4XBZ. Note that

∠Y AX = ∠BAX − ∠BAY = ∠ZBA− ∠XBA = ∠ZBX.

Also note that
XA

Y A
=
XA

AB
· AB
Y A

=
AB

BZ
· BX
AB

=
BX

BZ
.

Therefore4XAY ∼ 4XBZ by SAS.

Remark. It is also easy to solve this problem by the method of complex numbers.
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5. For positive integers n, define
an = 3n + 6n − 2n.

Find, with proof, all primes that do not divide any of the numbers a1, a2, a3, . . . .

Solution. Answer: 2 and 3. It is clear that, for n ≥ 1, the terms 6n and 2n are even while 3n is odd, so 2 - an. Similarly, 3n

and 6n are divisible by 3 but 2n is not, so 3 - an.

Let p ≥ 5 be a prime. We claim that ap−2 ≡ 0 mod p. We have

6ap−2 = 6(3p−2 + 6p−2 − 2p−2)

≡ 2 · 3p−1 + 6p−1 − 3 · 2p−1

≡ 2 + 1− 3 (by Fermat’s little theorem)
≡ 0 mod p.

Since p does not divide 6, p must divide ap−2.

Remark. To motivate this solution, we note that a−1 = 0. To convert this illegal value n = −1 into a legal value, we add p− 1
to n, which by Fermat’s little theorem does not affect any of the terms mod p.

6. Let R be the region consisting of all points inside or on the boundary of a given circle of radius 1. Find, with proof, all positive
real numbers d such that it is possible to color each point of R red, green or blue such that any two points of the same color are
separated by a distance less than d.

Solution. The answer is all d ≥
√
3.

If d ≥
√
3, refer to the diagram at right. Color 120◦ sectors OAB, OBC, and OCA red, green, and blue

respectively, including their boundaries on the circle. For the boundaries between the sectors, color OA red,
OB green, and OC blue, making point O red. Then it is clear that the red sector can be covered by a circle of
diameter AB =

√
3, so all points in it have a distance less than

√
3 except A and B, but B is not even red. So all

red points have a distance less than
√
3, and a similar argument can be made for the green and the blue.
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Now assume that d <
√
3. Let θ < 120◦ be the angle corresponding to a chord of length d. Let n be a positive integer large

enough so that
1

3n+ 1
<

120◦ − θ
120◦

,

that is,

θ < 120◦ − 120◦

3n+ 1
.

Define points P0, P1, P2, . . . recursively as follows: P0 is any point on the circumference, and for i ≥ 0, Pi+1 is the counter-
clockwise rotation of Pi by the angle

α = 120◦ − 120◦

3n+ 1
= 360◦ · n

3n+ 1
.

Note that
θ < α < 360◦ − θ,
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so for each i ≥ 0, PiPi+1 > d and Pi and Pi+1 are different colors. Also note that

θ < 2θ < 2α < 240◦ < 360◦ − θ,

so Pi and Pi+2 are different colors. Thus Pi, Pi+1, and Pi+2 are all different colors for each i. If we assume P0 is red, P1 is
green, and P2 is blue, we will get P3 red, P4 green, and so on until P3n+1 is green. But the total angle of rotation from P0 to
P3n+1 is

(3n+ 1)α = (3n+ 1) · 360◦ · n

3n+ 1
= n · 360◦,

so P0 and P3n+1 are the same point and we have a contradiction.

7. Let n > 1 be an integer. Three complex numbers have the property that their sum is 0 and the sum of their nth powers is also
0. Prove that two of the three numbers have the same absolute value.
Solution. Given that

a+ b+ c = 0 and an + bn + cn = 0,

let
t = ab+ bc+ ca and u = abc.

Then a, b, and c are the roots of the polynomial

f(z) = (z − a)(z − b)(z − c) = z3 + tz − u.

If t = 0, then a, b, and c are the three cube roots of u and thus all have the same absolute value; otherwise we can normalize,
dividing a, b, and c by a square root of t, so that t = 1. Now we have

f(z) = (z − a)(z − b)(z − c) = z3 + z − u.

Define pk = ak + bk + ck for nonnegative integers k (here we make the convention that 00 = 1). It is not hard to compute that
p0 = 3, p1 = 0, p2 = −2, and, for k ≥ 0,

pk+3 = upk − pk+1. (1)

This recursion allows us to think of each pk as a polynomial (with integer coefficients) in u. Our plan will be to prove that,
for k > 1, these polynomials have only real roots. Then, given that pn = 0, we can deduce that f(z) is a real polynomial and
therefore either has all real roots (which is impossible, since the sum of the 2nd powers of the roots is −2) or has a pair of
complex conjugate roots which have the same absolute value.

The leading term of pk follows a pattern which is not difficult to verify by induction. It is:

3ui if k = 3i, i ≥ 0
ki
2 u

i−1 if k = 3i+ 1, i ≥ 1
−kui if k = 3i+ 2, i ≥ 0

In particular, for k 6= 1, the leading coefficients of pk and pk+3 have the same sign, and the degree of pk+3 is one more than
the degree of pk. We will prove that the roots of pk alternate with the roots of pk+3 on the number line, with no two coinciding,
beginning and ending with a root of pk+3. When pk is constant (that is, for k = 0, 2, or 4) this statement is trivial, and we will
use it as the base of an induction. For all other k, the induction hypothesis tells us there is exactly one root of pk−3 between
each pair of roots of pk, and it suffices to prove the following statement:

If pk = 0, then pk+3 and pk−3 have opposite signs.

For brevity we will prove this only when x = pk−3 is positive and u is also positive; the proof readily generalizes when one or
both are negative. (By the induction hypothesis pk−3 6= 0, and if u = 0 then (1) gives pk+3 = −pk+1 = pk−1 = −pk−3 for
k ≥ 4.) Assume for contradiction that y = pk+3 ≥ 0. Using (1) repeatedly, we get

pk+1 = upk − pk+3 = −y
pk−2 = upk−3 − pk = ux

pk−1 = upk−2 − pk+1 = u2x+ y.

Note that pk−1, pk−2, pk−3 are all positive. Then, using the reverse recursion

pi =
pi+1 + pi+3

u
,

we get that pi > 0 for all i < k. Since p2 = −2, this is a contradiction.
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