IMO Aftermath

Evan O'Dorney

October 19, 2010

1. (IMO 2010, Problem 1) Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that the equality

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z \rfloor$ denotes the greatest integer less than or equal to z.)

- 2. Prove that any arithmetic progression $a, a + d, a + 2d, a + 3d, \ldots$ (a and d are real) contains only finitely many elements x such that $0 \le x \le 1$.
- 3. Suppose that eggs are being sold in cartons of $1, 2, \ldots, s$ with respective prices a_1, a_2, \ldots, a_s . Prove that there is an integer ℓ $(1 \le \ell \le s)$ with the following property: for all large enough n, the cheapest price of buying exactly n eggs can be achieved with a combination that includes at least one ℓ -egg carton.
- 4. (IMO 2010, Problem 6) Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers. Suppose that for some positive integer s, we have

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n-1\}$$

for all n > s. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_n = a_\ell + a_{n-\ell}$ for all $n \geq N$.