Complex Numbers in Geometry

Evan O'Dorney

November 16, 2010

- 1. Let ABCD be any quadrilateral, and let W, X, Y, Z be the centers of squares erected outwardly on the sides. Prove that WY = XZ.
- 2. The convex quadrilateral ABCD is inscribed in a circle centered at O and its diagonals intersect at E. Prove that if the midpoints of AD, BC, and OE are collinear, then either AB = CD or $\angle AEB = 90$.
- 3. Let ABCD be a convex quadrilateral inscribed in a circle. Let M and N be the midpoints of AB and CD, and let E and F be the intersections of AD and BC and of AC and BD. Prove that

$$\frac{2MN}{EF} = \left|\frac{AB}{CD} - \frac{CD}{AB}\right|.$$

- 4. In the same diagram, prove that the circumcircle of $\triangle FMN$ is tangent to EF.
- 5. Trapezoid ABCD, with $\overline{AB}||\overline{CD}$, is inscribed in circle ω and point G lies inside triangle BCD. Rays AG and BG meet ω again at points P and Q, respectively. Let the line through G parallel to \overline{AB} intersects \overline{BD} and \overline{BC} at points R and S, respectively. Prove that quadrilateral PQRS is cyclic if and only if \overline{BG} bisects $\angle CBD$.