Definitions for Dysfunctional Functions (aka Relations)

A relation R from a set A to a set B is a collection of ordered pairs whose first entry belongs to A and whose second entry belongs to B. If we take A and B to be the same we say R is a relation on A.

The **domain** of a function is the set of all points $a \in A$ for which there exists a $b \in B$ such that $(a, b) \in R$.

$$Dom(R) = \{a \in A \mid \exists b \in B \text{ s.t. } (a, b) \in R\}$$

The **range** of a function is the set of all points $b \in B$ for which there exists a $a \in A$ such that $(a, b) \in R$.

$$\operatorname{Ran}(R) = \{ b \in B \mid \exists a \in A \text{ s.t. } (a, b) \in R \}$$

A function F from A to B is a relation with the property that for each element a in the domain there exists a unique element b in the range such that $(a, b) \in R$. (i.e. If (a, b) and (a, c) belong to the relation, then b = c.)

A relation R on A is **reflexive** if for each element $a \in A$ we have $(a, a) \in R$. The relation is called **irreflexive** if for each element $a \in A$ we have $(a, a) \notin R$.

A relation R on A is symmetric if whenever $(a, b) \in R$ we also have $(b, a) \in R$. The relation is **anti-symmetric** if whenever (a, b) and (b, a) belong to R then a = b.

We say that a relation R on A is **transitive** if whenever (a, b) and (b, c) belong to R, then (a, c) is also in R.

A partition on a set A is a collection \mathcal{P} of subsets of A with the following properties

(1)
$$A = \bigcup \{X \mid X \in \mathcal{P}\}$$

(2) $X \neq \emptyset \quad \forall X \in \mathcal{P}$
(3) $X \cap Y = \emptyset$ whenever $X, Y \in \mathcal{P}$ with $X \neq Y$

An equivalence relation is a relation that is reflexive, symmetric, and transitive. If R is an equivalence relation on A, we will often write $a \sim b$ to denote $(a, b) \in R$. In this case we say a is equivalent to b.

Given an equivalence relation on A, we define the **equivalence relation** [a] on an element a to be the set of all points in A which are equivalent to a.

$$[a] = \{b \in A \mid a \sim b\}$$