
Poncelet’s Theorem

by
Robert L. Bryant

§0. Statement of the Theorem

First, some definitions about polygons:
Definition 1: An n-gon P is a sequence of n distinct points (p0, . . . , pn−1) in the

plane, called the vertices of P . For convenience, set pn = p0. The line segments pipi+1

for i = 0, 1, . . . , n−1 are called the sides of P .
Remark: To describe an n-gon P , what we care about is the cyclic order of the

points pi. Thus,

P = (p0, p1, p2, p3) " (p1, p2, p3, p0) " (p0, p3, p2, p1),

but (p0, p1, p2, p3) #" (p0, p2, p1, p3). (They don’t have the same set of sides.)
Definition 2: P is inscribed in a curve C if its vertices pi all lie on C .
Definition 3: P is circumscribed about a curve C if its sides pipi+1 are tangent to C .

Poncelet’s Theorem: Suppose that E0 is an ellipse in the plane and E1 is another ellipse
that contains E0 in its interior. If there is one n-gon P that is both inscribed in E1 and
circumscribed about E0, then there is an infinite number of such n-gons. (In fact, any
point on E1 is a vertex of exactly one such n-gon.)

Simple case: Let’s look at an easy case first: Two concentric circles:

E0 : x2 + y2 = 1 and E1 : x2 + y2 = r2, r > 1.

1. What value of r will make it possible to inscribe a 3-gon (i.e., a triangle) in E1 in such
a way that it will be circumscribed about E0? What can you say about these triangles?

2. What value of r will make it possible to inscribe a 4-gon (i.e., a quadrilateral) in E1

in such a way that it will be circumscribed about E0? What can you say about these
quadrilaterals?

3. What value of r will make it possible to inscribe a 5-gon in E1 in such a way that it
will be circumscribed about E0? Is there only one value of r that will work?
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4. Can you describe the value(s) of r that you’d need to have an n-gon inscribed in E1

and circumscribed about E0? Do the various values have any relation with each other?
(Hint: Complex numbers can be useful here, especially DeMoivre’s Formula.)

Slightly more complicated case: Suppose E0 is the unit circle, and E1 is given as
follows

E0 : x2 + y2 = 1 and E1 :
x2

a2
+

y2

b2
= 1, r > 1.

where a, b > 1.

5. Assuming Poncelet’s Theorem, what relationship between a and b will allow a 3-gon to
be inscribed in E1 and circumscribed about E0? (Check that your answer agrees with the
result of the first exercise when a = b = r > 1.)

6. Assuming Poncelet’s Theorem, what relationship between a and b will allow a 4-gon to
be inscribed in E1 and circumscribed about E0? (Check that your answer agrees with the
result of the second exercise when a = b = r > 1.)

7. (Harder) Assuming Poncelet’s Theorem, what relationship between a and b will allow
a 5-gon to be inscribed in E1 and circumscribed about E0?

§1. On quadratic curves, especially ellipses

Consider a polynomial of degree 2 in the variables x and y:

Q(x, y) = Ax2 + 2B xy + C y2 + 2D x + 2E y + F.

To avoid degenerate cases, assume that not all of A, B, and C are zero. The curve X in
the plane defined by the equation Q(x, y) = 0 is said to be a curve of the second degree.

If λ is a nonzero number, then Q(x, y) = 0 if and only if λQ(x, y) = 0, so we can
replace Q by λQ without changing the curve X.

It’s not always easy to see what X looks like, but can help to normalize the curve by
translating, rotating, and scaling.

Translation. If we set (x, y) = (x̄ + p, ȳ + q) for some point (p, q), we can write

0 = Q(x, y) = Q(x̄ + p, ȳ + q) = Q̄(x̄, ȳ)

where
Q̄(x̄, ȳ) = Ax̄2 + 2B x̄ȳ + C ȳ2 + 2D̄ x̄ + 2Ē ȳ + F̄ .

for some new constants D̄, Ē, and F̄ . This is called ‘translating to new coordinates’.
We say that (p, q) is the center of X if D̄ = Ē = 0. (You should think of this as

‘completing the square’, but in two variables instead of one.)
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Example: Let Q = x2 + xy + y2 − 4x − 5y. Then

x2 + xy + y2 − 4x − 5y = (x̄+1)2 + (x̄+1)(ȳ+2) + (ȳ+2)2 − 4(x̄+1) − 5(ȳ+2)

= x̄2 + x̄ȳ + ȳ2 − 7,

so the (a?) center of this curve Q(x, y) = 0 is (p, q) = (1, 2).

8. Show that if AC − B2 #= 0, then there always is a center and it is unique.

Rotation. One can also rotate coordinates by an angle θ

x = cos θ x̄ + sin θ ȳ,

y = − sin θ x̄ + cos θ ȳ,

9. Show that there is always an angle θ so that the rotated polynomial

Q(x, y) = Q( cos θ x̄ + sin θ ȳ , − sin θ x̄ + cos θ ȳ ) = Q̄(x̄, ȳ)

has B̄ = 0. Check that Ā + C̄ = A + C and that ĀC̄ − B̄2 = AC − B2.

Remark: Translation and rotation don’t change what a quadratic curve X ‘looks
like’, just where it is positioned in the plane.

When AC −B2 #= 0, by translating and rotating, we can get down to curves described
by equations of the form

Q(x, y) = Ax2 + C y2 + F = 0,

where A and C are non-zero. When A and C have the same sign and F has the opposite
sign, we can divide by −F and get down to the case

Q(x, y) =
x2

a2
+

y2

b2
− 1 = 0,

where a and b are positive numbers. Of course, when a = b this is a circle of radius a.
Otherwise, this is an ellipse.

Scaling. We can even get down to a circle if we are willing to scale x and y
independently:

x = a x̄ and y = b ȳ,

so that
x2

a2
+

y2

b2
− 1 = x̄2 + ȳ2 − 1 = 0.

Affine coordinate changes: Translation, Rotation, and Scaling are special cases
of the so-called affine coordinate changes, the most general of which is

x = a x̄ + b ȳ + p,

y = c x̄ + d ȳ + q,
where ad − bc #= 0.
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10. Why do you think one needs the condition ad − bc #= 0?

11. Explain why affine changes take linear polynomials L(x, y) = D x + E y + F and
quadratic polynomials Q(x, y) = Ax2 + 2B xy + C y2 + 2D x + 2E y + F into linear poly-
nomials and quadratic polynomials, respectively. (In particular, affine changes take lines
to lines and ellipses to ellipses. Moreover, affine changes are closed under composition and
inverse.)

We are going to need one more basic fact about affine changes of coordinates:

Area change rule: The area of a figure (for example, a triangle) measured in xy-
coordinates is |ac−bd| times its area measured in x̄ȳ-coordinates.

Remark: The proof of the area change rule relies on the fact that the area of the
parallelogram based at (0, 0) generated by the two vectors (a, b) and (c, d) is |ad−bc|.

Also, note that, ad−bc > 0 if (0, 0), (a, b), and (c, d) is a counterclockwise-enumerated
triangle, while ad−bc < 0 if (0, 0), (a, b), and (c, d) is a clockwise-enumerated triangle.

Tangent lines: A line meets an ellipse in at most 2 points.

12. Prove this. (Hint: You can do this by brute force, but, using affine changes of
coordinates, it’s enough to show it in the case when the ellipse is the circle x2 + y2 − 1 = 0
and the line is x − r = 0 for some r ≥ 0. Why?)

A line that meets an ellipse in exactly one point is said to be tangent to the ellipse.

Example: The line cos θ x + sin θ y − 1 = 0 is tangent to the circle x2 + y2 − 1 = 0 at the
point (cos θ, sin θ).

13. If (x0, y0) lies on the ellipse

x2

a2
+

y2

b2
− 1 = 0,

show that the line x0

a2
x +

y0

b2
y − 1 = 0

is tangent to the ellipse at the point (x0, y0). (Hint: there’s more than one way to do this.
One way is to parametrize the line in the form (x, y) = (x0 + a2y0t, y0 − b2x0t) and check
that t = 0 is the only time this point lies on the ellipse. There is a slicker way, though.)

14. Show that if a point p lies outside an ellipse E, then there are exactly two lines
tangent to E that pass through p. (Hint: Again, you can do this by brute force, but,
using affine changes of coordinates, it’s enough to show this in the case that E is the
circle x2 + y2 − 1 = 0 and p = (r, 0) where r > 1. Why? In this special case, where are
the two points of tangency?)
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15. (Important!) Show that if E is an ellipse with center C , X is a point outside E,
and P1 and P2 are the two points on E whose tangent lines to E pass through X, then
the two triangles (C,P1,X) and (C,P2,X) have the same area. (Hint: First, consider the
case when E is a circle!) (Note, though, that these two triangles are oppositely oriented!)

§2. Projective transformations

This section is harder than the earlier sections, but we need the Normalization Theo-
rem at the end to reduce Poncelet’s Theorem to the simpler case of a pair of ellipses with
a common center.

It turns out that affine changes of coordinates are not the only transformations that
take lines to lines and ellipses to ellipses.

Projective coordinate changes. Consider a set of 9 constants a1, . . . , a9 and
write

x =
a1 x̄ + a2 ȳ + a3

a7 x̄ + a8 ȳ + a9
,

y =
a4 x̄ + a5 ȳ + a6

a7 x̄ + a8 ȳ + a9
,

where det

∣∣∣∣∣∣

a1 a2 a3

a4 a5 a6

a7 a8 a9

∣∣∣∣∣∣
#= 0.

The condition that the determinant not vanish is what you need to be sure that you can
solve the above formulae for x̄ and ȳ. In fact, if

B =




b1 b2 b3

b4 b5 b6

b7 b8 b9



 is the inverse matrix of A =




a1 a2 a3

a4 a5 a6

a7 a8 a9





then
x̄ =

b1 x + b2 y + b3

b7 x + b8 y + b9
,

ȳ =
b4 x + b5 y + b6

b7 x + b8 y + b9
,

16. Explain why a projective coordinate change as above takes lines to lines, except for
the line b7 x + b8 y + b9 = 0 (which doesn’t seem to have anywhere to go). (Hint: Show
that

D x + E y + F =
D̄ x̄ + Ē ȳ + F̄

a7 x̄ + a8 ȳ + a9

for some constants D̄, Ē, F̄ . Why does this do it? What goes wrong when D x+E y+F =
b7 x + b8 y + b9?
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17. Explain why a projective coordinate change as above takes an ellipse E to an ellipse Ē,
as long as E doesn’t meet the line b7 x + b8 y + b9 = 0. (Question: What happens if E
meets this line in one point, or two points?) Explain also why such a coordinate change
takes lines tangent to such an E to lines tangent to Ē.

The reason we need projective transformations is the following result, which is proved
using techniques from Linear Algebra (usually a second-year college course).

Projective center alignment: If E0 and E1 are ellipses, with E0 inside E1, then there
is a projective change that takes E0 (respectively, E1) to an ellipse Ē0 (respectively, Ē1)
such that Ē0 and Ē1 have the same center C .

Once we know this, proving Poncelet’s Theorem reduces to checking the cases

E0 : x2 + y2 − 1 = 0, E1 :
x2

a2
+

y2

b2
− 1 = 0, (a, b > 1).

§3. Angle measure and other measures

The thing that made Poncelet’s Theorem so easy to prove for concentric circles is
that all the line segments with endpoints on the outer circle that are tangent to the inner
circle have the same length and subtend the same (radian) measure of arc. All you have
to do is determine whether this angle is a rational multiple of 2π, and you’ll know whether
the inscribing/circumscribing polygonal path you draw starting at any point will close. It
clearly doesn’t depend on the point where you start, which is exactly Poncelet’s Theorem
in this case.

18. The unit circle x2 + y2 − 1 = 0 is parametrized by

(x, y) = (cos θ, sin θ).

Implicit differentiation yields xdx + y dy = 0, and this can be written in the form

dy

x
= −dx

y
.

While neither of these expressions is defined everywhere on the circle (because x and y
each vanish at two points), show that each ratio (where defined) is dθ, which is defined
everywhere on the circle, and integrating it between two points on the circle gives the total
angle between the two points.

Now, in the general case, the angle subtended by the line segments that are inscribed
in E1 and are tangent to E0 is not independent of which segment you choose, so you can’t
use angle measure to prove Poncelet’s Theorem. However (and this is the amazing thing),
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it turns out that there is a sort of ‘generalized’ angle measure that is the same for all such
line segments. This angle measure is a little hard to see, but we are going to describe it
and show that it works.

It is not so surprising that other measures of angle are useful. A famous example
is one that comes from Kepler’s Laws: Remember that Kepler’s First Law says that a
planet moves on an ellipse, with the Sun at its focus. Kepler’s Second Law says that a line
segment joining the planet to the Sun sweeps out equal areas in equal times. What this
means is that, if you wanted to mark out equal ‘months’ on a planetary orbit, you wouldn’t
mark them out with equal angles, nor would you mark them out with equal distances along
the orbit. Instead, the measure you would use would be to divide so that the ‘elliptical pie
wedges’ have equal area. In other words, you’d measure according to ‘elliptical pie wedge
area’.

19. In polar coordinates (r, θ), an ellipse with a focus at the origin takes the form

r =
a(1−ε2)

(1 − ε cos θ)
,

where ε is the eccentricity. The area swept out between two values of θ is

A =
∫ θ1

θ0

1
2r(θ)2 dθ =

a2(1−ε2)2

2

∫ θ1

θ0

dθ

(1 − ε cos θ)2
.

Re-express this in rectangular coordinates and explain what the ‘elliptical pie wedge area’
represents geometrically.

What we are going to see is that, by distorting the natural angular measure on an
ellipse by the right geometric quantity, we can find the right ‘generalized angle’ measure
that will make Poncelet’s Theorem easy.

§4. The proof

Here is a different way to think about Poncelet’s Theorem: Let E0 and E1 be ellipses,
with E0 contained in the interior of E1. For any point q0 on E0, let p0 be the point on E1

where the counterclockwise tangent ray to E0 at q0 meets the outer ellipse E1. Since p0

is exterior to E0, it lies on two tangents to E1. One of those is the tangent at q0 and the
other is tangent at another point q1 on E0. Now continue this by induction: For each qi

(i ≥ 0), let pi be the point on E1 where the counterclockwise tangent ray at qi to E0

meets E1 and let qi+1 be the unique point on E0 so that the two tangents to E0 that pass
through pi are tangent to E0 at qi and qi+1.

Poncelet’s Theorem: If there is some point q0 on E0 and an integer n > 1 so that qn = q0,
then for any point q′0 on E0, one has q′n = q′0.

In other words, the polygonal path inscribed in E1 and circumscribed about E0 either
closes in n steps for all starting points or does not close in n steps for any starting point.
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1. The first step in the proof is to use projective geometry to reduce to the case where
the two ellipses are presented in standard form as

E0 =
{
(x, y) x2 + y2 = 1

}

E1 =
{
(z, w) z2/a2 + w2/b2 = 1

}

for some constants a, b > 1. This is proved by showing that the corresponding quadratic
forms (in 3 variables) can be simultaneously diagonalized. (Of course, this depends on the
fact that the two ellipses are disjoint, with one contained in the other.)

2. The second step is to consider the set S consisting of points (x, y, z, w) ∈ R4

where (x, y) lies on E0 while (z, w) lies both on E1 and on the tangent line to E0 at (x, y).
In other words, the set S is defined by the equations

x2 + y2 − 1 =
z2

a2
+

w2

b2
− 1 = xz + yw − 1 = 0.

Now, S is the disjoint union of two circles:

S+ =
{
(x, y, z, w) ∈ E xw − yz > 0

}

S− =
{
(x, y, z, w) ∈ E xw − yz < 0

}

Note that if q0 = (x, y), then p0 = (z, w) where (x, y, z, w) lies in S+. Moreover, q1 = (u, v)
where (u, v, z, w) lies in S−. In fact, the projection of S onto either E0 or E1 is a (trivial)
double cover of that ellipse.

Observe that there is a unique map τ : S± → S∓ with the property that τ (x, y, z, w) =
(x, y, z̄, w̄) and that there is also a unique map σ : S± → S∓ that has the property
that σ(x, y, z, w) = (x̄, ȳ, z, w). In other words, τ is the deck transformation for (x, y) :
S → E0 while σ is the deck transformation for (z, w) : S → E1.

The formulae for τ and σ can be found as follows: Let (x, y, z, w) lie in S. The tangent
line to E0 at (x, y) passes through (z, w) and is parallel to the vector (y,−x), so it follows
that, if τ (x, y, z, w) = (x, y, z̄, w̄), then there must be a value t so that

z̄ = z + ty, w̄ = w − tx.

Substituting these relations into the equation (z̄)2/a2 + (w̄)2/b2 = 1 yields a quadratic
equation for t that has t = 0 as a root, so the other root must be a rational expression in
the coefficients. In fact, computation gives

t = −2
(zy/a2 − wx/b2)
(y2/a2 + x2/b2)

.

Thus, τ is expressed rationally in terms of the functions x, y, z, and w on S.
Similarly, if σ(x, y, z, w) = (x̄, ȳ, z, w), the line through (x, y) and (x̄, ȳ) must be

orthogonal to the vector (z, w), so there must be a value s so that

x̄ = x + sw, ȳ = y − sz.
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Substituting these relations into the equation (x̄)2 + (ȳ)2 = 1 yields a quadratic equation
for s that has s = 0 as a root, so the other root must be a rational expression in the
coefficients. Computation gives

s = −2
(xw − yz)
(z2 + w2)

.

Thus, σ is expressed rationally in terms of the functions x, y, z, and w on S.
To prepare for the next step, observe that the function xw − yz is odd with respect

to σ, i.e., that
x̄w − ȳz = −(xw − yz).

This says that the area of the oriented triangle with vertices (0, 0), (x, y), and (z, w) is the
negative of the area of the oriented triangle with vertices (0, 0), (x̄, ȳ), and (z, w), a fact
that is geometrically obvious.

Correspondingly, for τ , one finds

z̄y/a2 − w̄x/b2 = −(zy/a2 − wx/b2).

This can be checked by hand, but it also has a natural interpretation in terms of the dual
ellipse E∗

1 defined by the equation a2 z2 + b2 w2 − 1 = 0.

20. Figure out this geometric interpretation by considering the two tangent lines to E∗
1

that pass through (x, y). (Hint: You can find them easily since you know the points (z, w)
and (z̄, w̄) on E1.)

Something like this might have been expected, since (xw − yz) is the expression
whose sign distinguishes the components S+ and S−. One might also note that the func-
tion zy/a2 − wx/b2 does not vanish on S (do you see why not?) and that it has opposite
signs on the two components.

3. The third step involves investigating the differentials on S. Differentiating the
defining equations of S yields three differential relations, which can be written together as




x y 0 0
0 0 z/a2 w/b2

z w x y









dx
dy
dz
dw



 =





0
0
0
0



 .

It is easy to check that the coefficient matrix has rank 3 at every point of S, which implies,
by the Implicit Function Theorem, that S is a smoothly embedded curve in R4. Moreover,
it implies that there are relations of the form

dx

y(zy/a2 − wx/b2)
=

−dy

x(zy/a2 − wx/b2)
=

−b2 dz

w(xw − yz)
=

a2 dw

z(xw − yz)
.

Now, you may object that these differential expressions are not well-defined every-
where since, after all, x, y, z, and w each vanish somewhere on S. However, notice that
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they do not all simultaneously vanish and hence, at every point of S, at least one of these
differential expressions is well-defined and smooth. In other words, there is a well-defined
1-form dθ on S that equals each of these four expressions on the open set where that
expression is well-defined. Moreover, by the implicit function theorem, this 1-form dθ is
nowhere vanishing.

Now, because τ (x, y, z, w) = (x, y, z̄, w̄), and because the expression (zy/a2 − wx/b2)
is odd with respect to τ , it follows from the first two expressions for dθ that dθ is odd with
respect to τ , i.e., that τ ∗(dθ) = −dθ. Similarly, because σ(x, y, z, w) = (x̄, ȳ, z, w) and
because (xw − yz) is odd with respect to σ, it follows that dθ is odd with respect to σ,
i.e., σ∗(dθ) = −dθ.

In particular, it follows that dθ is invariant under τ ◦σ and σ ◦ τ (which is the inverse
of τ ◦σ). In other words, if we choose to parametrize E+ (say) with respect to dθ, then σ◦τ
is just rotation by a fixed amount α.

More precisely, orient S so that dθ is a positive 1-form and define

L =
∫

S+

dθ .

Then we can define a mapping θ : S+ → R/(L ·Z) by setting

θ(x, y, z, w) =

(∫ (x,y,z,w)

(1,0,z0,w0)
dθ

)
mod L.

where (1, 0, z0, w0) lies on E+. This identifies S+ with the circle in such a way that σ ◦ τ
is carried over into translation by some α in R/(L · Z).

Now, the condition of the polygon closing in n steps is exactly the condition that
nα ≡ 0 in R/(L ·Z). Note that this doesn’t depend on the starting point q0, so Poncelet’s
Theorem is proved.
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