BERKELEY MATH CIRCLE                                  mARCH 29, 2011
Chromatic Numbers and More
Tatiana Shubin shubin@math.sjsu.edu
Imagine that you’re completely and utterly free – you’ve won a long week on a vacation island with no homework, no chores, and no bedtime.  You have lots of blank paper, an unlimited supply of different colored paints and you decide to paint whatever wild pattern comes into your mind – stripes, checks, paisley, bird’s eye, dog’s tooth, herringbone, plaid, polka dots, oh my!  Would there be any possible restriction to your exploits?  Why should there be any?  For example, here’s an interesting question:
1.   Is it possible to paint every point of the plane using exactly three colors so that every line contains points of exactly two colors?

Or how about some others:

2.   Is it possible to color each point on a circle either red or blue in such a way that no three points of the same color form an isosceles triangle?  What if instead of just two colors you can use k different colors?

3.   How many colors are needed to paint the real number line so that no two points a unit distance apart are painted the same color?
4.    How many colors are needed to paint the plane so that no two points a unit distance apart are painted the same color?

The minimal number of colors which are needed in order to paint all points of the Euclidean n-space
[image: image1.wmf]n

Â

in such a way that no two points a unit distance apart are of the same color is called the chromatic number of the space; it is usually denoted by
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 or simply by
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5.   In the graph below (called the Moser Spindle), the length of each edge is 1. Is it possible to paint the vertices of the graph using three different colors so that no two adjacent vertices are painted the same color?  (Note: vertices are called adjacent if they are connected by an edge.)
                                           [image: image4.png]



Digression: Pigeonhole Principle
6.   Given  n + 1 integers, prove that it is always possible to choose two of them whose difference is divisible by n.
7.   All squares of an infinite checkerboard are painted by n different colors.  Prove that there exists a rectangle with all four corner squares of the same color. Is it true that there exists a square with the same property?
8.   Given a convex hexagon of area 1, prove that there exists a diagonal which cuts out a triangle whose area is at most 
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Let’s go back to problem 5, and try to use the Pigeonhole Principle to solve it:

i. Prove that among any three vertices of the Moser Spindle there are two which are a unit distance apart.
ii. Now use the Pigeonhole Principle.
We used this – admittedly more difficult – way to solve problem 5 because it leads to the following generalization.


A set of points in the plane is called an (m, n)-critical configuration if it contains m points and for any subset of  n + 1 points from this set it is possible to find two points a unit distance apart.
Clearly, the Moser Spindle is an (m, n)-critical configuration. (What are the values of m and n here?). 

9.   If there exists an (m, n)-critical configuration, then 
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So we now have a lower bound for
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. What about an upper bound?

10.   Prove that 
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.  The following diagrams might help. 
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Some closing remarks


The Chromatic Number problem belongs to geometric combinatorics (a.k.a. combinatorial geometry) which is a relatively new and rapidly growing branch of mathematics. It deals with geometric objects described by a finite set of building blocks, for example, bounded polyhedra and the convex hulls of finite sets of points. Other examples include arrangements and intersections of various geometric objects. Typically, problems in this area are concerned with finding bounds on a number of points or geometric figures that satisfy some conditions, or make a given configuration “optimal” in some sense.  

Geometric combinatorics has many connections to linear algebra, discrete mathematics, mathematical analysis, and topology, and it has applications to economics, game theory, and biology, to name just a few.

Problems encountered within geometric combinatorics come in various forms; some are easy to state. Nevertheless, there are lots of problems that are extremely hard to solve, including a great many that remain open despite the efforts of some leading mathematicians.  In particular, Borsuk’s problem
 has not yet been completely solved;  to this day, the kissing numbers
 are known only for dimensions 1, 2, 3, 4, 8, and 24 (these numbers are 2, 6, 12, 24, 240, and 196,560, respectively; surprisingly, the latest one found was the kissing number for 
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 has not been found yet!
�  A beautiful solution of this problem based on the Van der Waerden’s theorem was found by Sam  Vandervelde.  Try to find it, too!





� To find the least number of subsets of smaller diameter in which a set of an n-dimensional space could be partitioned.





� Two spheres that have exactly one common boundary point are called kissing spheres. The largest number of equal spheres kissing a sphere of the same size is called the kissing number. 
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