
Berkeley Math Circle
Monthly Contest 7 – Solutions

1. Let x and y be integers such that
3x+ 4y

5
is an integer. Prove that

4x− 3y

5
is an integer.

Solution. The basic strategy is to combine the facts that x, y, and (3x+ 4y)/5 are all integers. Here is one solution:

2(x) + 1(y)− 2

(
3x+ 4y

5

)
=

5(2x+ y)− 2(3x+ 4y)

5
=

10x+ 5y − 6x− 8y

5
=

4x− 3y

5
.

Since the left side is clearly an integer, so is the right side.

2. Six rooks are placed on a 6 × 6 chessboard, at the locations marked +, so that
each rook “attacks” the five squares in the same row and the five squares in
the same column. Determine if it is possible to label each empty square with a
digit (0 through 9) so that for each rook, the ten squares which it attacks are all
labeled with different digits.

Solution. The answer is yes. One of many solutions is shown.

+
+

+
+

+
+

5 6 7 8 9

0 7 8 9 6

1 2 9 5 8

2 3 4 6 5

3 4 0 1 7

4 1 3 0 23. Let f(n) be the number of digits of a positive integer n (in base 10). Prove that

f(2n) + f(5n) = n+ 1.

Solution. Let f(2n) = x. Then since the smallest number with x digits is 10x−1 and the largest is 10x − 1, we have

10x−1 ≤ 2n < 10x.

However, a power of 2 (other than 1) cannot also be a power of 10, so the inequality is strict:

10x−1 < 2n < 10x. (1)

Similarly, if f(5n) = y, then
10y−1 < 5n < 10y. (2)

Multiplying (1) by (2),

10x−1 · 10y−1 < 2n · 5n < 10x · 10y

10x+y−2 < 10n < 10x+y

x+ y − 2 < n < x+ y.

Since the only integer between x+ y − 2 and x+ y is x+ y − 1,

n = x+ y − 1

so x+ y = n+ 1 as desired.

4. Let ABC be a triangle with incenter I . A line through I parallel to BC intersects sides AB and AC at D and E respectively.
Prove that the perimeter of4ADE is equal to AB +AC.

Solution. Because DE ‖ BC, ∠BID = ∠IBC which is the same as ∠DBI since I is on the bisector of ∠ABC. Thus
4BDI is isosceles, implying BD = DI . Similarly CE = EI . Thus the perimeter of4ADE is

AD +AE +DE = AD +AE +DI + EI = AD +AE +BD + CE = AB +AC.
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5. Two dice are loaded so that the numbers 1 through 6 come up with various (possibly different) probabilities on each die. Is it
possible that, when both dice are rolled, each of the possible totals 2 through 12 has an equal probability of occurring?

Solution. The answer is no. Suppose that each of the totals from 2 to 12 has an equal probability, which must be 1/11 since
the sum of all probabilities is 1. Let a and b be the probabilities of a 1 and a 6, respectively, on the first die, and let c and d be
the corresponding probabilities on the second die.

Since 1/11 is the probability of rolling a total of 2, ac = 1/11 so c = 1/(11a); since 1/11 is the probability of rolling 12,
bd = 1/11 so d = 1/(11b). Since the probability of rolling a 7 through the combination 1 + 6 or 6 + 1 is at most 1/11,

1

11
≥ ad+ bc

1

11
≥ a

11b
+

b

11a

1 ≥ a

b
+

b

a
.

Since a/b and b/a are reciprocals, one of them is at least 1, so this inequality cannot hold.

6. Let ABC be a triangle with ∠A = 120◦. The bisector of ∠A meets side BC at D. Prove that

1

AD
=

1

AB
+

1

AC
.

Solution. The area of4ABC is the sum of the areas of triangles ABD and ADC, so

1

2
AB ·AC · sin 120◦ =

1

2
AB ·AD · sin 60◦ + 1

2
AD ·AC · sin 60◦

1

2
AB ·AC ·

√
3

2
=

1

2
AB ·AD ·

√
3

2
+

1

2
AD ·AC ·

√
3

2
AB ·AC = AB ·AD +AD ·AC.

Dividing through by AB ·AC ·AD gives the desired result.

7. Let n and k be positive integers with n <
√
(k − 1)2k. Prove that it is possible to color each element of the set {1, 2, . . . , n}

red or green such that no k-term arithmetic progression is monochromatic.

Solution. Let A be the number of k-term arithmetic progressions in {1, 2, . . . , n}. For any common difference d, an arithmetic
progression of difference d fits in {1, 2, . . . , n} iff its initial term a satisfies

1 ≤ a < a+ (k − 1)d ≤ n

which is equivalent to
1 ≤ a ≤ n− (k − 1)d;

this inequality has n− (k − 1)d solutions, as long as n− (k − 1)d ≥ 0. Thus the total number of arithmetic progressions is

A =

b n
k−1c∑
d=1

(n− (k − 1)d).

As shown in the figure, the terms of this sum can be seen as the areas of nonover-
lapping rectangles lying under the graph of y = n− (k− 1)x. Their sum therefore
does not exceed the area of the triangle enclosed by this line and the axes:

A ≤ 1

2
· n

k − 1
· n =

n2

2(k − 1)
.

Now consider any k-term arithmetic progression. The number of colorings in
which it is monochromatic is

2n · 2
2k
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since, of the 2k ways that its terms might be colored, only 2 are monochromatic. Therefore the number of colorings that make
no k-term arithmetic progression monochromatic is at least

2n −A

(
2n · 2

2k

)
≥ 2n − n2

2(k − 1)
· 2n · 2

2k

= 2n
(
1− n2

(k − 1)2k

)
.

If n2 < (k − 1)2k (equivalently, n <
√
(k − 1)2k) then this lower bound will be positive, implying that there is at least one

coloring with the desired property.
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