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We first need to talk a little about modular arithmetic (also known as clock arithmetic): one fixes
a positive integer m (the modulus, for real clocks m = 12) and considers two integers a and b equal
modulo m if they differ by a multiple of m; in other words, a and b have the same remainder when
divided by m. In this case, we write a ≡ b mod m. Here are three examples:

• m = 12: We have 2 ≡ 14 ≡ 26 ≡ −10 mod 12. (Think about hours of the day and how they
would appear on a clock.)

• m = 2: Two integers are equal modulo 2 precisely if they have the same parity.

• m = 10: Two integers are equal modulo 10 precisely if they have the same last digit.

We’ll concentrate on the last example, so from now on we’ll do arithmetic modulo 10. Our goal
is to come up with a code modulo 10; that is, we want to send a message consisting of digits, and
we’d like to encode it in such a way that only our friends can decode it. In the following exercises
we’ll develop different codes, improving them as we move along.

(1) Become familiar with addition, subtraction, and multiplication modulo 10. Compute some
examples, make up a multiplication table, etc.

(2) The first code we’ll discuss goes back to Julius Cesar’s times (or so the story goes). You agree
with your friend on a modulus (say, 10) and a shift parameter (say, 3). The encoding takes a
digit d and moves it to d+ 3 mod 10. So let’s call the encoded digit e, then

e = d+ 3 mod 10 which is equivalent to d = e− 3 mod 10 .

So your friend will take the encoded digit e, subtract 3 from it (modulo 10), and thus retrieve
your original digit d. Think about why this way of encryption is not particularly safe.

(3) We don’t have division modulo 10 in the usual sense; however, some numbers do have multi-
plicative inverses modulo 10. What we mean is the following: if a · b ≡ 1 mod 10 then we say
that a and b are multiplicative inverses (modulo 10) of each other. Try out some numbers and
see which ones have multiplicative inverses modulo 10. Based on this data, come up with a
conjecture which numbers have multiplicative inverses modulo m and which don’t (where m is
arbitrary). Prove your conjecture (one way to do that uses the Euclidean Algorithm).

(4) Here is our second code. Once more you agree with your friend on a modulus (say, 10) and a
parameter (say, 3). The encoding takes a digit d and multiplies it by 3 modulo 10:

e = 3 · d mod 10 .

Come up with a decoding scheme. Why does it work? What happens if we replace the
parameter 3 by 2? Or 6? Which parameters other than 3 could we have used? Come up with
a good argument why this encryption scheme is safer than our first one. Also come up with an
argument why this second scheme is still not particularly safe.



(5) Take the numbers 0, 1, 2, . . . , 9 and multiply each of them by 3. What happens to this list of
numbers? What happens if instead we multiply the list by 2? By 6? Think about how this
relates to the previous exercise. Repeat this process in the general case, where we look at the
numbers 0, 1, 2, . . . ,m− 1 modulo m.

(6) Show that, if a has no common factor with 10 other than ±1 (we say that a and 10 are relatively
prime), then a4 ≡ 1 mod 10. Can you see where the exponent 4 comes from? Come up with a
similar equation for a general modulus m and think about how you could prove that equation.

(7) The next code we’ll describe is due to Diffie and Hellman. It is a public-key code because part
of the code is known to everyone. Here’s how it works: you and your friend choose a prime
number p and an integer g between 2 and p−1. Both of these numbers are public (so, e.g., you
two can safely discuss these numbers on the phone or over email—if someone wiretaps you, no
problem). Now you secretely choose an integer m, and your friend secretely chooses an integer
n. You compute gm mod p and tell your friend the result. Your friend computs gn mod p and
tells you the result. The secret key that you both can use is

s ≡ gmn ≡ (gm)n ≡ (gn)m mod p .

The last two equalities explain why both you and your friend can easily compute s. You can
now use s to encode messages, e.g., using multiplication mod p, and s−1 to decode. Can you
see why it’s hard to compute s if you know p, g, gm, and gn? How could you make this
cryptosystem safer? Do you see a way to “break” it?

(8) Now we’ll define Euler’s φ-function: φ(n) counts the numbers between 1 and n that are rela-
tively prime to n. Compute the first couple of values of this function: φ(1), φ(2), φ(3), . . . Find
a formula for φ(n) when n is prime. Find a formula for φ(mn) in terms of φ(m) and φ(n) in
the case that m and n are relatively prime. One of Euler’s theorem says that, if a is relatively
prime to n, then aφ(n) ≡ 1 mod n. Conclude that, if b · c ≡ 1 mod φ(n), then

(
ab

)c ≡ a mod n.

(9) The previous exercise allows us to introduce the RSA cryptosystem.1 Here’s how it works: You
need two prime numbers p and q, compute their product m = pq, find a number b that is
relatively prime to φ(m) = (p − 1)(q − 1), and compute an inverse c of b modulo φ(m), i.e.,
bc ≡ 1 mod φ(m). You keep all of this private except for the numbers m and b which you
make public (in particular, your friends know m and b). To send you a message d, your friend
encodes it as

e = db mod m.

You can decode your friend’s message by computing

d = ec mod m.

Explain why this decoding works. What makes this cryptosystem safe? How could you make
it safer? What would one need to break it?
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1The RSA cryptosystem is named after its discoverers Ron Rivest, Adi Shamir, and Leonard Adleman.


