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These vary somewhat in difficulty, but should all be fairly accessible.

Applications of Euler’s Formula

1. Using Euler’s Formula, prove that you can’t connect eight points pairwise on a torus,
in such a way that none of the connecting curves intersect. (“The complete graph K8

cannot be embedded in a torus.”)

2. With the same stipulation as the previous problem, connect five points pairwise on a
torus; then six; then seven (hard!).

3. What’s the maximum number of points that can be connected pairwise on the projec-
tive plane? On a Klein bottle?

4. Prove that any triangulation of the torus must have at least 7 vertices. That is,
your solution to the previous problem (connecting 7 vertices pairwise on the torus)
constitutes a minimal triangulation of the torus. What’s the analogous result for the
projective plane?

Other problems

5. If Σ1 and Σ2 are surfaces, prove that χ(Σ1#Σ2) = χ(Σ1) + χ(Σ2)− 2.

6. (Not easy)

(a) By cutting and pasting polygons, show that T#P = P#P#P .

(b) Here’s another approach to the same result. By cutting out a disk from T#P
and P#P#P , we obtain the connected sum of a torus and a Möbius strip, and
the connected sum of a Klein bottle and a Möbius strip, respectively. Show that
these last two connected sums are homeomorphic. This implies (by gluing the
disk back in) that T#P = P#P#P .

7. (a) Comb a hairy torus without singularities. Then do the same for a hairy Klein
bottle.

(b) Comb a hairy projective plane in such a way that there’s only one singularity.

(c) Comb a hairy sphere in such a way that there’s only one singularity.


