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Problem 1: Let ABC be a triangle such that ∠A = 2∠B. Prove that a2 = b(b+ c), where a, b, c are length
of sides BC, AC, AB respectively.
Solution Sketch: Let D be a point on BC such that ∠BAD = ∠B. Then, |BD| = |AD| and triangles ABC
and DAC are similar. The equality follows immediately.

Problem 2: Find all integers m, n such that

3 · 2m + 1 = n2

.
Solution Sketch: Rewrite the equation as 3 · 2m = (n− 1)(n+ 1). Then, there are integers p and q such that
3 · 2p = n− 1, 2q = n+ 1 or 3 · 2p = n+ 1, 2q = n− 1. Or equivalently 3 · 2p − 2q = ±2. At this point, looking
at a few cases, we can find that only (m,n) = (0, 2) = (3, 5) = (4, 7) satisfy the equation.

Problem 3: For non-negative integers a < b let M(a, b) be the arithmetic mean of
√
i2 + 3i+ 3 for a ≤ i ≤ b.

Compute the whole part of M(a, b) as a closed form function of a and b.
Solution Sketch: It is easy to show that

i+ 3/2 <
√
i2 + 3i+ 3 < i+ 2

Then, summing these inequalities, we get
a+ b

2
+

3
2
< M(a, b) <

a+ b

2
+ 2

Thus, if a and b have the same parity, then [M(a, b)] = a+b+2
2 . Otherwise, [M(a, b)] = a+b+3

2

Problem 4: Find all functions f : R+ ⇒ R+ such that

(1 + yf(x))(1− yf(x+ y)) = 1

for all x, y ∈ R+, where R+ is a set of all positive real numbers.
Solution Sketch: Let g(x) = 1/f(x). Then, the equation becomes g(x+ y)− g(x) = y. Let h(x) = g(x)− x.
Then, the equation becomes h(x + y) = h(x). It is obvious that only constant function can satisfy this. It is
easy to check that f(x) = 1/(x+ c) for any non-negative c satisfies then condition.

Problem 5: In subset A of set 1, 2, . . . , 2010, the difference of any two elements is not a prime number.
What is the maximum number of elements that can be in A.
Solution Sketch: Let A = a1, a2, . . . , ak and let a1 < a2 < . . . < ak. Furthermore, divide A into groups
of consecutive integers and call these groups clusters. It is obvious that a cluster can contain either 1 or 2
elements. In the former case, if ai is a cluster, then the next cluster can start no earlier than with ai + 4. We
say that ai ”ate” 3 numbers (ai + 1, ai + 2, ai + 3 cannot appear in A). In the latter case, if ai, ai + 1 is a
cluster, then, the next cluster can begin no earlier than with ai + 9. In this case, we say that ai ate ai + 2,
ai + 3, ai + 4 and ai + 1 ate ai + 5, ai + 6, ai + 7, ai + 8. Thus, in any case, a number in A eats at least three
numbers after itself. It is obvious that no number is eaten twice.

Thus, summing the numbers in A and the eaten numbers, we can write the following inequality

k + 3(k − 2) ≤ 2010

We have k−2 because the last cluster can have two elements and can be at the very end not eating any numbers
lower than 2011. Thus, we have that k ≤ 504. However, if k = 504, the last cluster has to have two elements,
it has to be at the very end and all other clusters have to have one element and be spaced exactly 3 numbers
between each other. This case, does not work, because 2005 and 2010 has to be in A but their difference is
prime. Thus, k ≤ 503, which is achievable with a set 1, 5, 9, . . . , 2009.
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Problem 6: Consider n > 2 checkers placed at the vertices of a regular n-gon. Each checker is colored
red on one side and blue on another side. In one move, one can choose any three consecutive checkers and
flip them up side down. A ”situation” is any configuration of checkers (situations that are different only by a
rotation, are considered different). How many situations can be reached from a given one with a finite number
of moves?

Solution Sketch: For n = 3k + 1 and n = 3k + 2, it is easy to find a set of moves that change the color of
only one checker. Thus, all 2n situations are reachable from any situation.

If n = 3k, let s0 = c3, c6, . . . , c3k, s1 = c1, c4, . . . , c3k−2, s2 = c2, c5, . . . , c3k−1, where ci’s are checkers.
Let ni be the number of top-red checkers in si. There are 8 possible cases of parities of nis. We will shows
that given a situation, we can reach all situations in the same case and all situations in the ”opposite” case
(where the parities of all nis are changed). Thus, the total number of situations reachable when n = 3k, is
2n/8 + 2n/8 = 2n−2.

First, it is obvious that we cannot reach more than this, because given an initial situation, each more changes
the case to the opposite one and we can never land into any one of the other 6 cases.

To show that we can reach all the situations in these two cases, we just need to see that with two moves
that overlap on two checkers we can change the colors of two checkers in one of sis without changing anything
else. After that, the argument is pretty simple.

Problem 7: Let a, b, and c be non-negative real numbers and x, y, and z be positive real numbers such
that a+ b+ c = x+ y + z. Prove that

a3

x2
+
b3

y2
+
c3

z2
≥ a+ b+ c

Solution Sketch: We just need to show that

a3

x2
+
b3

y2
≥ (a+ b)3

(x+ y)2

and apply it twice. This inequality is pretty easy. All one needs to do is to simplify it, let w = x/y and d = a/c,
divide both sides by b3y4 so that the inequality becomes in terms of w and d. Then, one can factor out (w−d)2

to get the final obvious inequality of

(w − d)2(2wd+ w2 + 2w + d) ≥ 0

Problem 8: Let O be the center of inscribed circle of an acute triangle ABC. Let points A0, B0, C0 be the
centers of circumscribed circles around triangles BCO, ACO, ABO respectively. Prove that lines AA0, BB0,
CC0 intersect in one point.

Solution Sketch: It is not hard to see that

∠BA0C0 = ∠C0A0O = ∠OA0B0 = ∠B0A0C ≡ α
∠CB0A0 = ∠A0B0O = ∠OB0C0 = ∠C0B0A ≡ β
∠AC0B0 = ∠B0C0O = ∠OC0A0 = ∠A0C0B ≡ γ

Let A1 be the intersection of B0C0 and AA0. Define B1 and C1 analogously. Then,
|B0A1|
|A1C0|

=
SAA0B0

SAA0C0

=
|AB0||A0B0| sin 3β
|AC0||A0C0| sin 3γ

=
sin γ|A0B0| sin 3β
sinβ|A0C0| sin 3γ

Writing down analogous expressions for |C0B1|
|B1A0| and |A0C1|

|C1B0| and multiplying all of them we get 1. By Ceva’s
theorem, we are done.

Problem 9: Prove that for any natural number k, there exists a natural number n such that n has ex-
actly k different prime factors and 2n2

+ 1 is divisible by n3.
Problem 10: Let I be the center of circle w inscribed in trapezoid ABCD. Sides AD and BC intersect at
point R. Let P and Q be the tangent points of W with sides AB and CD, respectively. Let the line passing
through P and perpendicular to PR intersect lines AI and BI at points A0 and B0, respectively. Also, let the
line passing through Q and perpendicular to QR intersect lines CI and DI at points C0 and D0, respectively.
Prove that A0D0 = B0C0.


