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1. Fermat and Pascal

On September 22, 1636 Fermat claimed in a letter that he could find the area under
any “higher” parabola and Roberval wrote back to say that he had discovered the same

thing by using the inequality nk+1

k+1 < 1k + 2k + 3k + · · · + nk < (n+1)k+1

k+1 . Not to be
outdone, Fermat responded with a set of equations saying “All these propositions, however
pretty in themselves, have aided me in the quadrature that I am pleased you value”. See
Edwards [?]. Fermat is referring here to actually finding a closed form for the sum of the
powers. Although he did not provide a proof he did indicate that he used the patterns
that arise in the figurate numbers,i.e., the triangular numbers, the pyramidal or tetrahedral
numbers which are sums of triangular numbers, and so on. So before Newton and Leibniz
have discovered the Fundamental Theorem of Calculus, Fermat had already solved the
tangent line problem and area problem for polynomials.

Thus the table of numbers which we call Pascal’s Triangle was well-known long before
Pascal wrote it down in his treatise on the “arithmetical triangle” in 1654. The name
“Arithmetical Triangle” had been given to the configuration in 1630 by de Moivre and that
in turn gave rise to the title of Pascal’s book. However the table itself is much older and
can be found in India, China, Arabia and Japan hundreds of years previous to this. Never-
theless the insights and connections to binomial coefficients, combinatorics and probability
that Pascal revealed in this treatise more than justify renaming it Pascal’s Triangle. He
presented 12 theorems with proof including the binomial theorem for positive exponents
and a combinatorial proof of the recursive formula for forming the triangle. He also showed
how to apply the triangle by using it to answer an outstanding problem on how to divide a
bet when a game of chance had been stopped before a winner was determined. In a further
treatise he shows how to use the binomial coefficients to find the sum of the kth powers
of the first n − 1 positive integers if the formulas for the sums of the powers less than k
are known. For example, knowing the sum of the first n natural numbers is n(n+1)

2 and
(n + 1)3 − n3 = 3n2 + 3n + 1, to calculate the sum of the squares Pascal proceeded as
follows.

n3 − (n− 1)3 = 3(n− 1)2 + 3(n− 1) + 1
(n− 1)3 − (n− 2)3 = 3(n− 2)2 + 3(n− 2) + 1

...
...

23 − 13 = 3(1)2 + 3(1) + 1

n3 − 13 = 3
n−1�

k=1

k2 + 3
n−1�

k=1

k + n− 1
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This can be solved for the sum of the squares and simplified.
n−1�

k=1

k2 =
1

3

�
n3 − n− 3

n−1�

k=1

k

�
=

1

3
n3 − 1

3
n− n(n− 1)

2
=

1

3
n3 − 1

2
n2 +

1

6
n

This procedure of Pascal’s can be generalized and became the standard method used in
algebra books after he presented it in a separate treatise Potestatum Numericarum Summa,
“Sums of Powers of Numbers”. It is interesting to note how telescoping is used to remove
all but the first and last term on the left. If you look at the usual proof of the Fundamental
Theorem of Calculus you will see essentially the same technique. I first encountered this
technique in one of Polya’s famous books on problem solving. After criticizing the solution
as a “device” coming from “out of the blue”, he goes on to show how one might come up
with such an idea. He finishes with “A method is a device which you use twice.”

Exercise 1. If you have studied upper and lower Riemann sums, use Roberval’s inequality
to evaluate

� 1
0 xn dx.

Exercise 2. The triangular numbers, tn are found by summing the first n natural numbers:
{1, 3, 6, . . . , n(n+1)

1·2 , . . . }. The pyramidal numbers are given by pn = t1 + t2 + t3 + · · · + tn.

Show that pn = n(n+1)(n+2)
1·2·3 . Generalize this and find these numbers in Pascal’s Triangle.

Exercise 3. From Pascal’s Triangle we have

(n+ 1)k+1 − (n)k+1 =

�
k + 1

1

�
nk +

�
k + 1

2

�
nk−1 + · · ·+

�
k + 1

k

�
n+

�
k + 1

k + 1

�
.

Show by successively substituting n − 1, n − 2, . . . , 2, 1 in for n and adding that Pascal’s
method can be generalized to

(k + 1)
n−1�

j=1

jk = nk+1 − n−
�
k + 1

2

� n−1�

j=1

jk−1 − · · ·−
�
k + 1

k

� n−1�

j=1

j.

Exercise 4. Substitute n + 1 for n in the equation above in Exercise ?? and use the new
equation to prove the right-hand side of Roberval’s inequality.

Exercise 5. Prove Bernoulli’s inequality which states that for x ≥ −1 and k > 0,

(1 + x)k ≥ 1 + kx.

This is clearly true by the binomial theorem for x ≥ 0. Use induction for −1 ≤ x < 0.

2. Faulhaber and Bernoulli

By 1631, unbeknownst to Pascal and Fermat the “Arithmetician of Ulm”, Faulhaber had
already found the formulas for the sum of the powers up to 17. Jakob Bernoulli knew of
Faulhaber’s work and included, with credit, the formulas in his Ars Conjectandi, “The Art
of Conjecturing” which was published posthumously in 1713. After showing how to derive
the formulas in a manner similar to Pascal, he writes out the formulas for the powers up

to 10. (The

�
stands for sum and ∗ indicates a missing power. Note that he is adding the

powers of n numbers instead of n − 1 numbers) At this point he says “Indeed, a pattern
can be seen in the progressions herein, which can be continued by means of this rule. . . .’
See Mathematical Masterpieces [?]. Can you see what Bernoulli saw? Look at the formulas
on the next page. Certain patterns are clear. What is the degree of the polynomial? What
are the coefficients of the highest degree term and the next to highest degree term? Which
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terms are missing? Now it becomes confusing. What are the coefficients in the third and
following columns? How can the last coefficient in a row be found?

the sums of powers formulas for the first few values of k, which students can
prove by mathematical induction for general k from Pascal’s equation. This

leads us to hope there is a pattern to the remaining coefficients.

Jakob Bernoulli: A pattern emerges
In 1713 Jakob Bernoulli’s posthumous book on the nascent field of probability

appeared, The Art of Conjecturing, and in a section on permutations and com-

binations, we find him first list the formulas for Sums of Powers up to exponent

ten (using the notation
�
for the discrete sum from 1 to n), and then claim a

general pattern to the formulas (Bernoulli, 1975, vol. 3, pp. 164–167):

�
n =

1

2
nn+

1

2
n.

�
nn =

1

3
n3 +

1

2
nn+

1

6
n.

�
n3 =

1

4
n4 +

1

2
n3 +

1

4
nn.

�
n4 =

1

5
n5 +

1

2
n4 +

1

3
n3 ∗ − 1

30
n.

�
n5 =

1

6
n6 +

1

2
n5 +

5

12
n4 ∗ − 1

12
nn.

�
n6 =

1

7
n7 +

1

2
n6 +

1

2
n5 ∗ −1

6
n3 ∗+ 1

42
n.

�
n7 =

1

8
n8 +

1

2
n7 +

7

12
n6 ∗ − 7

24
n4 ∗+ 1

12
nn.

�
n8 =

1

9
n9 +

1

2
n8 +

2

3
n7 ∗ − 7

15
n5 ∗+2

9
n3 ∗ − 1

30
n.

�
n9 =

1

10
n10 +

1

2
n9 +

3

4
n8 ∗ − 7

10
n6 ∗+1

2
n4 ∗ − 3

20
nn.

�
n10 =

1

11
n11 +

1

2
n10 +

5

6
n9 ∗ −1n7 ∗+1n5 ∗ −1

2
n3 ∗+ 5

66
n.

Indeed, a pattern can be seen in the progressions herein which can

be continued by means of this rule: Suppose that c is the value of any
power; then the sum of all nc or

�
nc =

1

c+ 1
nc+1 +

1

2
nc +

c

2
Anc−1 +

c · c− 1 · c− 2

2 · 3 · 4 Bnc−3

+
c · c− 1 · c− 2 · c− 3 · c− 4

2 · 3 · 4 · 5 · 6 Cnc−5

+
c · c− 1 · c− 2 · c− 3 · c− 4 · c− 5 · c− 6

2 · 3 · 4 · 5 · 6 · 7 · 8 Dnc−7 . . . ,

where the value of the power n continues to decrease by two until it

reaches n or nn. The uppercase letters A, B, C, D, etc., in order,

6

Here is what Bernoulli saw.
n�

i=1

ik =
nk+1

k + 1
+

nk

2
+

n�

j=2

1

k + 1

�
k + 1

j

�
Bjn

k+1−j for k ≥ 1,

where Bk ∈ {1
2 ,

1
6 , 0,−

1
30 , 0,

1
42 , 0,−

1
30 , 0,

5
66 , 0,−

691
2730 , 0 . . . }. By setting n = 1 the left-hand

side becomes 1 and the last coefficient, Bk, can be found from the proceeding ones.

Exercise 6. Complete the next two rows in Bernoulli’s table. Note that the 5
66 becomes

10
132 which makes the seventh column continue 55

132 ,
220
132 ,. . . . You should then be able to find

that B12 = − 691
2730 .

Exercise 7. Bernoulli claimed to have found the sum of the tenth powers of the first
thousand integers in less than 7.5 minutes. Let n = 1000 in the final row of Bernoulli’s
table and see if you can match Bernoulli. Do this with pencil and paper only! (If you accept
this mission you should get 91,409,924,241,424,243,424,241,924,242,500.)

Exercise 8. Roberval’s inequality can be proved completely using Bernoulli’s inequality
to conclude (1 + 1

n)
k+1 > 1 + k+1

n and (1 − 1
n)

k+1 > 1 − k+1
n . (Hint: Multiply the each

inequality by nk+1 and solve for nk. Combine the results to get the compound inequality

nk+1 − (n− 1)k+1

k + 1
< nk <

(n+ 1)k+1 − nk+1

k + 1

Now substitute 1, 2, 3, . . . , n into the inequalities and add the n inequalities.)

3. Euler

One of the series problems Jakob Bernoulli was unable to solve was to find the exact
value of

�∞
k=1

1
k2 . In his treatise of 1689 he did show that the sum was between 1 and 2 and
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said he would be most gratified if someone would solve it. In 1731, Euler using logarithms,
integration, and power series was able to show

�∞
k=1

1
k2 =

�∞
k=1

1
2k−1k2

+ (log 2)2. See
Dunham [?]. With this fast converging series he was able compute the sum to 6 decimal
places (over 106 terms of the original series would have to be added to get this kind of
accuracy). At this time Euler is on his way to discovering the Euler-Maclaurin Summation
Formula. Later he will recognize the connection with Bernoulli’s work and will name the
numbers we have seen the Bernoulli Numbers. Using this technique he is able to calculate
the sum to 20 decimal places and compare it with the amazing fact he has discovered in
1735 that “six times the sum is the square of π”. With this result Euler was elevated to the
position of number one in the world of mathematics, but he did not rest there. This was in
some ways just the beginning. Euler continued to produce world class mathematics for the
next 48 years. Among the many things he proved were that when x

ex−1 is expanded as a

power series the result is
�∞

k=0
Bk
k! x

k for |x| < 2π. The result for the sum of the reciprocals

of the squares was generalized to show
�∞

k=1 =
1

k2n = 4n|B2n|π2n

2(2n)! for n ∈ N

Exercise 9. Use (log 2)2 +
�14

k=1
1

2k−1k2
to approximate

�∞
k=1

1
k2 to 6 decimal places.

Euler shows in the second volume of his famous textbook Institutiones Calculi Differen-
tialis. See a translation of this chapter in [?]. what he did to estimate s =

�∞
k=1 =

1
k2 . Let

s =
�

1
x2 dx+B1

1
x2 −B2

1
x3 +B3

1
x5 − · · · where x−(n+2) comes from the higher derivatives

of x−2, i.e., 1
(n+1)!

dnx−2

dxn . Euler notes that the Bk’s become infinitely large, but he intends to
only add the terms “until they begin to diverge”. It was his genius that could detect when
that occurred. Later study of divergent series vindicates his method.

Exercise 10. To do the same calculation Euler did, solve for C the constant of inte-
gration, let x = 10 and s be the actual sum of the first 10 terms to 20 decimal places
(1.5497677311665406904). Beginning with s add the following: 1

x−
1

2x2 +
B2
x3 +

B4
x5 + · · ·+ B16

x17 .
If you maintain 20 decimal places you will have found the sum to 17 decimal places.

4. Bernoulli Mnemonic and Fermat Again

A simple mnemonic for the power sum formula is

1k + 2k + · · ·+ nk =
(n+B)k+1 −Bk+1

k + 1

where the symbol Bk, after the binomial is expanded, is replaced with Bk and B1 = +1
2

instead of −1
2 since the sum is taken to nk rather than (n− 1)k. See Conway and Guy [?].

Finally, we return to Fermat. A major breakthrough was made in 1850 by Kummer
when he proved that whenever a prime p > 2 is regular, Fermat’s last theorem, xp+yp = zp

never has non-zero solutions, is true. A prime p is regular iff p does not divide any of the
numerators of the Bernoulli numbers B2, B4, . . . , Bp−3. The only irregular primes less than
100 are 37, 59 and 67. Kummer actually went on and eliminated these three cases.

Direct comments or questions to tricycle222@mac.com



Sums of Powers Warm-ups
To warm up for this session find the following sums. It might be helpful to know how Pascal’s triangle is
formed. See the other side of this sheet for the first twelve rows.

1.
100

∑
k=1

k

2.
100

∑
k=1

k(k−1)

3.
100

∑
k=1

k(k−1)(k−2)

4.
100

∑
k=1

k2

5.
100

∑
k=1

k3

6.
100

∑
k=2

1
k(k−1)

7.
100

∑
k=3

1
k(k−1)(k−2)

8.
∞

∑
k=1

1
k

9.
∞

∑
k=1

1
k2

10.
∞

∑
k=1

1
k4



Sums of Powers

Fill in the next two rows of the triangle.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

Sk(n) = 0k + 1k + 2k + · · · (n− 1)k. Use the pattern to fill in the row for S6(n) so that the polynomial will
sum the first n−1 positive integers to the sixth power

S0(n) = 1n

S1(n) = 1
2n2 − 1

2n

S2(n) = 1
3n3 − 1

2n2 + 1
6n

S3(n) = 1
4n4 − 1

2n3 + 1
4n2

S4(n) = 1
5n5 − 1

2n4 + 1
3n3 − 1

30n

S5(n) = 1
6n6 − 1

2n5 + 5
12n4− 1

12n2

S6(n) =
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S10(n) = 1
11n11− 1

2n10+ 5
6n9 − n7 + n5− 1

2n3 + 5
66n

To sum the powers from 1 to n, the second coefficient becomes +1
2 rather than −1

2 . Use S10(n) to compute
the sum of the first 1000 positive integers to the 10th power.


