Binary Arithmetic Worksheet

Convert the following numbers from binary to base 10:

1.
$$11_2 =$$

2.
$$100_2 =$$

3.
$$1001_2 =$$

4.
$$1101_2 =$$

5.
$$10101_2 =$$

Convert the following numbers from base 10 to binary:

6.
$$11_{10} =$$

7.
$$100_2 =$$

8.
$$1001_2 =$$

10.
$$10101_2 =$$

Counting in Binary

1

2

4 100

8 1000

16 10000

32 100000

64 1000000

128 10000000

256 100000000

512 1000000000

1024 10000000000

•

•

.

To convert a number from binary to base 10, just break the number into a sum of numbers from the above list.

Example: Convert 100112 to base 10

Or, written another way:

$$10011_2 = 10000_2 + 10_2 + 1 = 16 + 2 + 1 = 19_{10}$$

To convert a number from base 10 to binary, do the following:

- 1. Write down the largest binary number from the list which is less than or equal to the base 10 number.
- 2. Subtract the number from the base 10 number.
- 3. Repeat steps 1 and 2 with the new number.

Example: Convert 197₁₀ to binary

- 1. The largest binary number that is no bigger than 197 is 128, which written in binary is 10000000.
- 2. Subtract 197 128 to get 69.
- 3. The largest binary number that is no bigger than 69 is 64, which in binary is 1000000.
- 4. Subtract 69 64 to get 5.
- 5. The largest binary number that is no bigger than 5 is 100.
- 6. Subtract 5 4 to get 1.
- 7. The largest binary number that is no bigger than 1 is 1 and we're done:

The binary number that is equivalent to 197_{10} is

	10000000_2
+	1000000_2
	100_{2}
	1_2
	11000101_2

The Game of Nim

Object: Force your opponent to make the last move.

Rules: Two players each take turns crossing out circles. On a move, at least one circle must be crossed out and at most one entire column may be crossed out.

o	o			o	o	o			o	o	o
o	o			o	o	o			o	o	o
o	o			o	o	o				o	o
o				o	o					o	o
					o						o
											o
#1					#2					#3	
0	0	0	0			0	0	0	o	0	
o	o	o	o			o	o	o	o	o	
o	o	o	o			o	o	o	o	o	
o	o	o	o			o	o	o	o	o	
o	o		o					o	o		
o			o					o			
	#4							#5			

0 o 0 o 0 o 0 o o o o o o 0 o 0 o o o 0 o o o o o o o o o 0 o o o 0 o o o #6 #7 o o o o o o 0 o 0 o o o o o o o 0 o o 0 0 o 0 0 o 0 o o o o o

#8

How to Win at Nim

- 1. Write out the number of markers in each column in binary
- 2. Compute the Nim sum of all the columns and call it X
- 3. Take the Nim sum of X with each column and call it Y
- 4. Find a column whose size decreases
- 5. Remove enough markers so that what is left is Y

Example:

 $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

0 0 0

0 0 0

0 0 0

0 0

O

111

110

101

X = 100

Compute the Nim sum of X with each column:

111

100

Y = 011

111

110

Y = 001

111

101

Y = 010

Solution: take away 4 (the value X) from any of the columns

Continue with the subsequent moves.