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Notation. A (simple) continued fraction is an expression of the form
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where ag, a1, ... are positive integers. We let
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be the reduced forms of the convergents of the continued fraction, and
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be the remainders of the continued fraction.

Problems
1. Prove that
Pn+1 = QGnPn + Pn—-1
n+1 = AnQn + Gn—1

for n > 2. If these equations are to hold also for n = 0 and n = 1, what must po/qo and p_1/q_1
be?

2. Prove that
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for n > 1.

3. Prove that if # = vk for some positive integer k, not a perfect square, then all the remainders z;
(i > 1) have the form
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for positive integers P and @ such that Q | (k — P?).
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For problems 4-6, k is a non-square positive integer, d = |Vk|, and f(z) = i i

4. Prove that if @ > 0 is any real number, then the sequence

{a, f(a), F(f(a), F(f((a))),. -}
converges to the limit v/k.
5. Prove that (k — d?) | 4d? if and only if
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for integers s, v, m satisfying ged(m, s) =1, m > s, and 2 | sum.

6. Prove that (k — d?) | 2d if and only if the remainders z; and x3 in the continued fraction expansion
of = vk are equal. (This necessarily implies that the continued fraction [ag, a1, as, - - -] has period
2 after the first term.)



