National Bulgarian Mathematical Olympiad 1997 Regional Round

(1) Find all positive integers a, b, and c such that the roots of the equations

$$x2 - 2ax + b = 0$$
$$x2 - 2bx + c = 0$$
$$x2 - 2cx + a = 0$$

are positive integers.

(2) Let the convex quadrilateral ABCD be inscribed in a circle, $F = AC \cap BD$ and $E = AD \cap BC$. If M and N are the midpoints of AB and CD, prove that

$$\frac{MN}{EF} = \frac{1}{2} \left| \frac{AB}{CD} - \frac{CD}{AB} \right| \cdot$$

(3) Prove that the equation

$$x^{2} + y^{2} + z^{2} + 3(x + y + z) + 5 = 0$$

has no solutions in rational numbers.

- (4) Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = f\left(x^2 + \frac{1}{4}\right)$ for all $x \in \mathbb{R}$.
- (5) Let K_1 and K_2 be unit squares with centers M and N such that MN = 4, two of the sides of K_1 are parallel to MN and one of the diagonals of K_2 lies on the line MN. Find the locus of midpoints of the segments XY where X and Y are interior points of k_1 and k_2 , respectively.
- (6) Find the number of all non-empty subsets of the set $S_n = \{1, 2, ..., n\}$ which do not contain two consecutive integers.

National Bulgarian Mathematical Olympiad 1997 Final Round

- (1) Consider the polynomials $P_n(x) = \sum_{i=0}^k \binom{n}{3i+2} x^i$ where $n \ge 2$ and $k = \lfloor \frac{n-2}{3} \rfloor$.
 - (a) Prove that $P_{n+3}(x) = 3P_{n+2}(x) 3P_{n+1}(x) + (x+1)P_n(x)$.
 - (b) Find all integers a such that $P_n(a^3)$ is divisible by $3^{\lfloor \frac{n-2}{3} \rfloor}$ for all $n \ge 2$.
- (2) Let M be the centroid of $\triangle ABC$. Prove the inequality

$$\sin \angle CAM + \sin \angle CBM \le \frac{2}{\sqrt{3}}.$$

- (a) if the circumcircle of $\triangle AMC$ is tangent to the line AB;
- (b) for any $\triangle ABC$.
- (3) Let *n* and *m* be positive integers and $m + i = a_i b_i^2$ for i = 1, 2, ..., n, where a_i and b_i are positive integers and a_i is square-free. Find all *n* for which there exists *m* such that $a_1 + a_2 + \cdots + a_n = 12$.
- (4) Let a, b, and c be positive numbers such that abc = 1. Prove the inequality $\frac{1}{1+a+b} + \frac{1}{1+b+c} + \frac{1}{1+c+a} \le \frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c}$
- (5) Let BM and CN be the angle bisectors in $\triangle ABC$ and let ray MN^{\rightarrow} intersect the circumcircle of $\triangle ABC$ at point D. Prove that

$$\frac{1}{BD} = \frac{1}{AD} + \frac{1}{CD}$$

(6) Let X be a set of n + 1 elements, $n \ge 2$. The ordered *n*-tuples $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$ consisting of distinct elements of X are called "disjoint" if there exist distinct indices *i* and *j* such that $a_i = b_j$. Find the maximal number of *n*-tuples an two of which are "disjoint".