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1 Introduction

I learned about this “trick” in a lecture by John Conway a number of years ago. He calls it “Rational Tangles”
and there is plenty of information about it on the internet. Since then I have used it myself in classrooms
of students of middle school age and older. The underlying mathematics is very interesting, but it is not
necessary that the students understand the mathematics to get a lot out of the trick. In fact, some of the
mathematics I do not understand.

This document is intended for teachers and includes some pedagogical advice on how to use Conway’s trick
to teach the students something about mathematics.

The idea is that we can associate a number with a tangle of two ropes and that by performing a sequence of
two simple operations, we can untangle the ropes in a straightforward way.

Often the best way to get students to practice rote mathematics is to give them a problem that is intrinsically
very interesting, but whose solution requires repeated calculations of the sort that you are trying to get them
to practice. To do these rope trick calculations, the students will need to practice arithmetic with positive
and negative fractions. There is also an opportunity for advanced students to look at far more interesting
mathematics.

2 Getting Started

To demonstrate the trick, you need four students and two lengths of rope that are about 10 feet long. Heavier
rope is better because it is easier to see the knot structure and it is harder to accidentally pull into tight knots
that are difficult to work with. If the ropes are of two different colors, the tangle structure is even easier to
see. Bring a few plastic shopping bags.

Get four volunteers to stand at the corners of a rectangle at the front of the class with each student holding
one end of a rope. In the initial configuration, the two ropes are parallel to each other and parallel to the front
row of seats in the classroom. In Figure 1, the top pair of parallel lines represents the two ropes, and the small
circles at the ends with the letters “A”. “B”, “C” and “D” represent the four students. If you imagine that you
are looking down on the students from the ceiling, the rest ofthe class is seated above the entire figure on the
page. The four students at the corners face the rest of the class.

Make sure that each student has a solid grip on the rope, perhaps wrapping the end once around their hand
so that it is not accidentally dropped. During the trick, no student should ever let go of his or her end of the
rope. Don’t let the kids start jerking on the rope, since if one end comes loose, it is very easy to lose track
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of exactly how the ropes were tangled, and if this occurs, thetrick will fail, and the students will lose their
interest rapidly. Also, although the trick works for arbitrarily complex tangles, be sure to work with simple
ones at first since there is much less chance of an error.

You can explain to the kids that they are going to do somethinglike a square dance where the four students
perform one of three “dance figures”. Also explain that the initial configuration with the parallel, untangled
ropes will be assigned the number zero, and that the performance of each dance figure will affect that number
in a fixed way. Also, tell the rest of the kids in the class to payattention, since you’ll swap out sets of kids
from time to time so that many more of them can be part of the action.

The only thing that matters is the configuration of the ropes:which student is in which position does not
affect the number assigned to a particular tangle.

3 The Three Basic Dance Figures

Conway calls the two main dance figures “Twist ’em up” and “Turn ’em around”. The unfortunate thing
about this choice is that they both begin with the letter “T ”. If you’re trying to analyze the results of various
sequences, these names do not provide an easy shorthand. Here I will use “Twist” and “Rotate”, since then
you can write something like “TTRTR” to indicate that sequence of 5 figures in the dance (in this case, two
twists, followed by a rotate, then a twist, and finally, another rotate). In what follows, I will use the names
Twist andRotate, and “T ” and “R” as shorthand, especially when I need to refer to a sequence of moves.
(In fact, we will see that when a sequence is repeated, we can also use an exponential notation. For example,
the sequenceTTTTRTTTR can be written using the shorthandT 4RT 3R.)

Later in this article we will get even a little more sloppy andsay things like “apply aTTR” as a shorthand
for “apply aTwist, then anotherTwist and aRotate”.

When explaining the move “Twist”, make sure that all four students pay attention, since although only two
of them perform any particularTwist, they may be arranged differently later in the dance and willhave to do
it when they are in those positions.
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Figure 1: Twisting

To perform theTwist dance figure, the two students on the left (from the point of view of the students) change
places, with the student initially in the rear lifting his orher rope and the student in front stepping back under
it. As it is labeled in Figure 1, students A and B swap places, where B lifts his or her rope and A steps under
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it to the rear. In Figure 1 the results of performing zero, one, two and three of theTwist dance figures (or,
in shorthand, performingT 0, T 1, T 2 andT 3) from the initial (zero) configuration are shown from top to
bottom. Notice that from the points of view ofboth of the students holding the ropes, after starting from zero
and performing justTwist moves, the ropes will appear to twist away from them in a clockwise direction.
Notice that with eachTwist, the positions of students A and B are swapped. Demonstrate this to the class.
Near the end of this document, in Figure 2 are some photos of tangles made with real rope that are probably
easier to visualize than those in Figure 1.

Each time aTwist move is made, the number associated with the tangle is increased by1, so in Figure 1 the
four tangles from top to bottom are represented by the numbers0, 1, 2 and3. If the tangle’s number is a pure
integer like this, then the integer represents the number ofhalf-twists in the rope.

Conway’s dance figures for manipulating tangles do not admitanUnTwist figure (which would exactly undo
a Twist), but if there were one, it would be easy to do: the same two people on the left change places, but
this time the person in front raises the rope and the person behind steps under it. Such anUnTwist dance
figure would subtract1 from the tangle’s associated number. This is a very obvious concept, and ifTwist and
UnTwist were the only two legal moves, it’s clear that starting from zero, any positive or negative integer
could be obtained, and if you knew that number, the ropes could be untangled by performing that number of
UnTwists orTwists, depending on whether the number were positive or negative.

The second dance figure,Display, does nothing to the tangle; it is simply to display the condition of the ropes
and tangle to the rest of the class. To do aDisplay, the two people farthest from the class raise their ropes and
the two in front lower them so the tangle is displayed in an unobstructed way. Conway usually also required
that everyone in the class cheer and clap when aDisplay dance figure was performed.

To perform the third dance figure,Rotate, each student moves one position clockwise, when viewed from
above. In Figure 1 if we began from the top arrangment in the figure, aRotatewould move A to C’s position,
B to A’s position, D to B’s position and C to D’s position. If you were toRotate four times in a row, each
student would wind up exactly where they started. Demonstrate to the class that at least when there are only
twists in the rope (and in fact it will always be true) that twoRotatedance figures will return the ropes back
to where they started, even though the students will be on theopposite sides. Perhaps this can be made clear
by reminding the students that the number3, for example, represents 3 clockwise half-twists of the ropes
from the point of view of any of the students. As they turn around, nothing is going to change the clockwise
orientation, so after the two pairs on the ends have swapped places, they still see three clockwise half-twists,
so rope configuration is unchanged.

This observation indicates that the operation on the numberassociated with the tangle has to bring it back to
where it started if you apply that operation twice. Depending on the sophistication of the class, you might
use functional notation as follows:

Letx be the number associated with the current tangle. If we applyaTwist, we’ll use the functiont(x) = x+
1 to indicate what aTwist does to the current number. At this point, we don’t know what theRotatenumber
r(x) does, but we do know two things. Clearly,r(r(r(r(x)))) = x, since rotating everyone completely
around the square obviously leaves everything completely unchanged, no matter what the tangle. We also
know for sure that if the tangle consists only of twists, thenr(r(x)) = x.

Warning: This functional notation may be confusing, since the functions have to be written in the opposite
order that the dance figures are performed. For example, if westart from a tangle whose associated number
is x and do aTwist followed by aRotate, we’ve been using the notation “TR” to indicate that: “twist, then
rotate”. But to figure out what the resulting corresponding number should be, theTwist will turn x into t(x)

3



and theRotate function will operate ont(x) to producer(t(x)). It’s easy to see how this reversal will always
occur, so that something like “TTRTTTRT = T 2RT 3RT ” will convert an initial numberx to:

t(r(t(t(t(r(t(t(x)))))))).

So the bottom line is that unless you’ve got a sophisticated audience, it’s probably a good idea to avoid the
functional notation.

At this point we still don’t know exactly howRotate should affect the tangle’s associated number. All we
know (or at least suspect) is that applyingRotate twice brings us back to where we started. In other words,
r(r(x)) = x.

For another clue about howRotate should affect the number (or alternatively, the form ofr(x)), have the
students do this: Start from the ropes in a “zero” tangle. Do oneTwist (so the number is now1). Next do
a Rotate. Finally do anotherTwist, and they will find that this brings the ropes back to the untangled state;
namely, zero. This means that after theRotate, the number must have been−1, since adding1 to it brings us
back to a0 configuration. SoRotate changes a1 to a−1. (Alternatively, using the functional notations we
could write:r(1) = −1.)

The class will then probably make the reasonable (but wrong)guess that aRotatedance figure multiples the
number by−1. Sometimes they even guess that it adds2. You can convince them that adding2 is clearly
wrong, since doing it twice should return to the original number and adding2 twice will add4 to the original
number. The conjecture thatRotate multiplies the number by−1 (or functionally, thatr(x) = −x) makes
sense, since multiplying by−1 twice returns to the initial number. But it’s easy to test: Start from0, do two
Twists (which will convert the tangle’s number to2) followed by aRotate. If Rotatemultiplies by−1, then
the ropes should then be in the−2 state, and twoTwists should add2 to the−2, returning the tangle to the
initial state. Try it, and see that this does not happen.

Depending on the sophistication of the class, you can eithertell them the answer, or try to lead them to it
by considering other operations that turn1 into −1 but not2 into −2, yet when repeated twice bring every
number back to itself.

Some classes have students who have a good enough geometric intuition to look at a tangle as simple as that
generated by starting at zero and then performingTTR = T 2R (alternatively, producingr(t(t(n)))). The
sequence that undoes it isTRTT = TRT 2, for some reason. At least that’s another data point.

Here is one other thing that can be done: Do aTTR which produces a numberx. Have the class take a good
look at the ropes in this configuration. Follow that by aT (which producesx + 1) and notice that the result is
just a mirror image ofx. In the same way that−1 and1 are mirror images,x andx + 1 are also. This means
that another good guess might be that−x = x + 1, which we can solve to yieldx = −1/2. If this is true,
then we know that theRotatecommand converts a2 into−1/2.

If the class is a little bit sophisticated, here is another nice thing to do. Start with the usual zero configuration
and do a singleRotate. Now do any number ofTwist operations. TheTwist operations have no effect: the
ropes remain parallel to each other, but perpendicular to the front row of the class. This means that whatever
numberr(0) happens to be (let’s call iti, for now), this “number”i has the strange property thati + 1 = i.
Now there aren’t any normal numbers like that, but maybe one of the kids will come up with the idea that
∞ + 1 = ∞, so perhapsi = ∞, whatever that means.

If that’s the case, we haver(r(x)) = x, we haver(1) = −1, it seems likely thatr(2) = −1/2 and we have
r(0) = ∞ (and obviously, if we rotate the “∞” configuration we’ll return to zero, sor(∞) = 0). These
may provide enough clues for a sophisticated class to determine the correct operation to associate with the
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Rotate dance figure. (Actually, an even better number to assign might be−∞, but that may require even
more sophistication on the part of the students.)

The correct answer is thatRotate takes the tangle represented byx and turns it into the tangle represented
by −1/x. Thus, starting from zero, the sequenceTTR leaves a tangle with value−1/2. You can check
this by starting from zero, doing aTTR (which should leave−1/2), then doing aT (yielding a value of
−1/2 + 1 = +1/2), then anR (yielding−2) and then aTT brings you back to zero. Have the class check
that this works for the examples examined so far, and if they’ve discovered the∞ idea, that it makes some
sort of sense even then.

See if the kids can figure out how to get aTTT (with value3) back to zero. It’s a little bit complicated and
requires 8 steps which are listed below. If the kids have no idea how to proceed, the following clue may be
enough to get them going: “We’re starting at+3 and trying to get to zero. If we do aTwist, we’ll just be
at +4, which is even farther from our goal.” This should lead the kids to think that aRotate is the best way
to proceed. After they’ve done theRotate command, if they’re still wondering what to do, say, “If you do
anotherRotate, it’ll just undo the effects of your previousRotate”. Thus it may be clear that the only way
to make progress toward zero from+3 is to begin withRT . In any case, let them work on it for a while, but
here is the fastest sequence that returns+3 to zero:

3
R

−→ −
1

3

T
−→

2

3

R
−→ −

3

2

TT
−→

1

2

R
−→ −2

TT
−→ 0.

4 Getting to Zero

At this point you can begin to consider how an arbitrary tangling of the rope using theTwist andRotate
commands can be converted back to the untangled state again using only theTwist andRotate commands.
You might begin by having the kids suggest moves that tangle the rope a little bit: perhaps seven or eight
steps, but carefully keeping track of the numbers. For now, make sure they start with at least twoTwists and
mix in bothTwists andRotates after that.

If they try to do twoRotates in a row, point out that although this is perfectly legal, the secondRotateundoes
the first, so the two moves taken together achieve nothing.

What you can do is collect move suggestions from different kids, keeping track of the tangle’s number until
it is “suitably” complex. Also, as your first example, stop them after a command has left the number positive.
For example, the sequenceTTRTTTRT , starting from zero, leaves a tangle with associated number3/5.
This is a nice number since it doesn’t have numerator or denominator that’s too big, but it is complicated
enough to be interesting. We’ll use this example in what follows.

Tell the kids that their goal is to get the number3/5 down to zero using onlyRotate andTwist commands.
As a first hint, tell them thatTwist will add 1 which will take the number even farther away from zero, so to
make progress, the only possible command isRotate. We now have−5/3.

Point out now that anotherRotatewill just undo the one they did, so the only reasonable next step is aTwist,
yielding−2/3. At this point aRotatewill not put you back where you started, but it would yield a positive
number, and that can’t be good, since anotherRotate is useless, and one or moreTwist commands would
take the number away from zero. Thus from−2/3, the only reasonable move is anotherTwist, yielding1/3.

Repeating the arguments above, we clearly need aRotate, taking us to−3, and then threeTwists get back to
zero. Go ahead and do this with the ropes and verify that indeed it does untangle the mess.
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If you haven’t done it already, this is a good time to swap in a new set of four students.

Now for the best part: make another tangle, a bit more involved than the last one, and once it’s created, put the
tangle into a bag as follows. Take a plastic bag and make two small holes in the corners opposite the opening.
Take the ropes, one at a time, from the two kids on the left and feed them through the holes and back to the
kid. Pull the bag opening over the tangle and tie the whole thing shut so that the tangle is completely enclosed
in the bag.

Finally, carefully apply the steps that undo the tangle and when you’re done, there will be a horrible snarl
of ropes and plastic, which, if you’ve made no mistakes, should be equivalent to zero. To prove it, tear the
plastic bag into pieces to extract it from the tangle, and then with a few tugs, the entire mess will appear to
magically untangle itself!

It’s sometimes fun to do this more than once, so bring more than one plastic bag to the class.

5 “Bad” Tangles

The following tangles are perfectly ok in a mathematical sense, but untangling them is a long process, and
can be quite error-prone. For that reason, unless you’ve gotmasochistic tendencies, avoid tangles with
numbers like−1/n, wheren is a large integer. They are easy to produce: suppose you start from zero
and doTTTTTTTTR: eight Twist dance figures followed by aRotate. This will produce the number
−1/8. It’s a good exercise to try to untangle it using our method tosee what happens. Here’s what happens,
shown as a series of steps:

Start Operation Result

−1/8 TRT −1/7
−1/7 TRT −1/6
−1/6 TRT −1/5
−1/5 TRT −1/4
−1/4 TRT −1/3
−1/3 TRT −1/2
−1/2 TRT −1
−1 T 0

It requires22 moves to return−1/8 to zero. Not only that, but the arithmetic is pretty boring: go though the
details for a couple of the rows above to see what happens.

6 Discussion Topics

Here are a few ideas that may lead to interesting class discussions:

6.1 Infinity as a Tangle Number

Try starting with zero and do a singleRotate. This yields the nonsense value−1/0, but it’s not a nonsense
tangle. AnotherRotate will bring it back to zero, and in fact, it sort of behaves like“infinity” in the sense
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that aTwist (try it) leaves it exactly the same. This sort of correspondsto the idea that adding1 to ∞ leaves
it unchanged. You may have discussed this earlier, depending on the sophistication of the class.

6.2 Proof of Convergence to Zero

Can you prove that the scheme outlined above will always eventually grind any initial fraction down to zero?
Go through a few examples and see what is happening. Here is anexample starting from−5/17:

−
5

17

T
−→

12

17

R
−→ −

17

12

TT
−→

7

12

R
−→ −

12

7

TT
−→

2

7

R
−→ −

7

2

TTTT
−→

1

2

R
−→ −

2

1

TT
−→ 0.

Note that after eachRotatecommand, the resulting negative fraction has a smaller denominator. Why is this?
If the denominators always eventually get smaller, they must eventually get to1. But when a denominator is1
the fraction will be a negative integer, and if that integer happens to be−n, we know thatn Twist commands
(each adding1) will reduce it to zero.

6.3 Relationship to the Greatest Common Divisor

If the students are a bit advanced, you can point out that the process of reducing the fraction down to zero is
almost exactly the same as finding the greatest common divisor (theGCD) of the numerator and denominator.
Since we begin with a fraction reduced to lowest terms, this will always get us down to1 as theGCD.

Euclid’s algorithm for calculating theGCD of two numbers works as follows. If the two numbers arem and
n, and we suppose thatm > n, we can write:m = kn+l, wherek ≥ 1 is an integer and|l| < n. Any number
that dividesm andn must dividel in the equation above, so we can conclude thatGCD(m, n) = GCD(n, l).
The numbers in the right hand side are reduced, and the process can be repeated until one is a multiple of the
other.

Here is an example: find theGCD of 4004 and700:

4004 = 700 × 5 + 504

700 = 504 × 1 + 196

504 = 196 × 2 + 112

196 = 112 × 1 + 84

112 = 84 × 1 + 28

84 = 28 × 3.

TheGCD of 4004 and700 must divide504 from the first line, soGCD(4004, 700) = GCD(700, 504). The
same process can be continued to obtain:

GCD(4004, 700) = GCD(700, 504) = GCD(504, 196)

= GCD(196, 112) = GCD(112, 84) = GCD(84, 28).

But 84 is an exact multiple of28, soGCD(84, 28) = 28, and we can therefore conclude that

GCD(4004, 700) = 28
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as well.

Note that there is no requirement that the numbers on the right hand sides of the sequence of reductions be
positive. All that we require for convergence is that they besmaller in absolute value than the smaller of the
two values for which you are trying to obtain theGCD. Also note that division can be achieved by repeated
subtraction, and if you simply check to see if the subtraction yields a non-positive number, you know you
have gone far enough. It’s sort of like backing up your car until you hear breaking glass, but it works!

With all that in mind, let’s find theGCD of 5 and17 using this totally crude method:

5 = 17 × 1 − 12

17 = 12 × 1 + 5 = 12 × 2 − 7

12 = 7 × 1 + 5 = 7 × 2 − 2

7 = 2 × 1 + 5 = 2 × 2 + 3 = 2 × 3 + 1 = 2 × 4 − 1

2 = 1 × 1 + 1 = 1 × 2 + 0.

Note the similarity of this method to the one we used to obtainGCD(4004, 700) above. But this time,
rather than doing a division, we do repeated subtractions until the remainder is zero or negative. Then we
use the (positive value of) the remainder in the next step. Wefinally discover that1 divides2 evenly, so
GCD(5, 17) = 1. Now compare this sequence to the one that reduces the tanglevalue−5/17 to zero at the
beginning of this section. You will see that the calculations are virtually identical.

6.4 What Tangle Numbers Are Possible?

Is it possible to start from zero and get to any (positive or negative) fraction? Have the students mess around
for a while and see what fractions they can come up with. Also,set goals, such as, “Can you start from zero
and get to−3?” If there is no progress, here is a giant hint:

3

1

R
−→ −

1

3

T
−→

2

3

R
−→ −

3

2

TT
−→

1

2

R
−→ −

2

1

TT
−→ 0

0
TT
−→

2

1

R
−→ −

1

2

TT
−→

3

2

R
−→ −

2

3

T
−→

1

3

R
−→ −

3

1
.

If we start from3 and work our way to zero using our standard methods, the sequenceRTRTTRTT does
the trick. But now note that if we start from zero and use the reverse of the sequence above, namely:
TTRTTRTR, we get to−3. Also, note that at every stage in the sequence, the same fractions are gen-
erated, except that they have opposite signs.2

6.5 Minimum Steps from 0

From the previous section, we know that we can get to any fraction i/j by using our algorithm to grind−i/j
to zero, and then reversing the order of the dance figures. Is this the minimum number of steps?

The tables below show the minimum number of steps to get to positive and negative fractions between1/1
and7/7 (the second shows the steps to get fractions between−1/1 and−7/7). We use exponents to reduce
the size of the strings in the sense that we might express the sequenceTTRTTRTTT asT (TRT )2T 2. An
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X in a slot indicates that the fraction represented by that slot is not reduced to lowest terms. So for example,
to look up the shortest sequence that will get you from zero to−5/7, we use the second table below (since the
fraction is negative). We look in the column headed by−5 and the row headed by7 and find the following:
T (TTR)3, which would expand toTTTRTTRTTR, and it is easy to verify that this, in fact, will generate
−5/7. Check some other examples.

Similarly, if you look in the column headed by6 and the row headed by4, you find anX , since6/4 is not
reduced to lowest terms: you should have been looking for3/2 in column3, row2.

Table 1: Positive fractions:
1 2 3 4 5 6 7

1 T T 2 T 3 T 4 T 5 T 6 T 7

2 T 2RT X T 2RT 2 X T 2RT 3 X T 2RT 4

3 T (TRT )2 T 3RT X T (TRT )2T T 3RT 2 X T (TRT )2T 2

4 T (TRT )3 X T 4RT X T (TRT )3T X T 4RT 2

5 T (TRT )4 T 2(TRT )2 T 2RT 3RT T 5RT X T (TRT )4T T 2(TRT )2T
6 T (TRT )5 X X X T 6RT X T (TRT )5T
7 T (TRT )6 T 2(TRT )3 T 3(TRT )2 T (TRT )2T 2RT T 2RT 4RT T 7RT X

Table 2: Negative fractions:
−1 −2 −3 −4 −5 −6 −7

1 TR T (TRT )R T (TRT )2R T (TRT )3R T (TRT )4R T (TRT )5R T (TRT )6R
2 T 2R X T 2(TRT )R X T 2(TRT )2R X T 2(TRT )3R
3 T 3R T 2RT 2R X T 4RTR T 2RT 3RTR X T 4RT 2RTR
4 T 4R X (T 2R)3 X T 5RTR X (T 2R)2T 3RTR
5 T 5R T 2RT 3R T 3RT 2R T (TRT )3TR X T 6RTR T 2RT 4RTR
6 T 6R X X X (T 2R)5 X T 7RTR
7 T 7R T 2RT 4R (T 2R)2T 3R T 4RT 2R T (TTR)3 (TTR)6 X

There are some obvious patterns here, and an interesting exercise is both to look at the patterns and then to
try to prove them. Here is a list of some of the obvious ones; perhaps there are others.

T n : 0 −→ n

T (TRT )n : 0 −→ 1/(n + 1)

T 2RT n : 0 −→ (2n − 1)/2

T 2(TRT )n : 0 −→ 2/(2n + 1)

T (TRT )nR : 0 −→ −(n + 1)

On the following page is a list of fractions that can be obtained, starting from zero, by applying various
sequences ofT andR. The data on that page may also be useful to generate conjectures about sequence
patterns and the fractions resulting from them.

Some sequences do not yield patterns that are obvious at first. For example, consider the sequence:T 2RT ,
T 3RT 2, T 4RT 3, . . . , in other words, what doesT n+1RT n represent? The first few values are1/2, 5/3,
11/4, 19/5, 29/6. The denominators go up by1 each time and the numerators by4, 6, 8, 10. A little fooling
around will yield the formula(n(n + 1) − 1)/(n + 1), for n > 0. Following this idea can lead to an
investigation of how to find formulas to represent the numbers in some series.
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Figure 2: Tangles with real rope

In Figure 2 is illustrated a series of tangles as they appear with real rope. Reading from the top left, they
represent the numbers:

0, 1, 2, 3,−1/3,−1/3+ 1 = 2/3, 2/3 + 1 = 5/3, and − 1.

All but the final−1 are achieved from the previous tangle by a twist or a rotate. The final tangle, correspond-
ing to−1, by performing rotate to the tangle in the upper right that represents1.
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Figure 3: Turning5/3 back to0.

Figure 3 illustrates the conversion of the tangle represented by5/3 back to zero. We begin with5/3 in the
upper-left photo, which is the same as the5/3 displayed in Figure 2. It’s easy to check that the sequence
RTRTTTR will convert that to−2 and each successive photo above shows the result after each of those7
steps. It should be clear by looking at it that two moreTwist dance figures will completely untangle the ropes
in the final photo.
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Here is a table listing the resulting fraction from various sequences ofT andR:

R ∞ T 5RT 2R −5/9 T 8RTR −8/7 T 7RT 2RT 6/13
T 1/1 T 4RT 4 15/4 T 7RT 3 20/7 T 6RT 5 29/6

T 2 2/1 T 4RT 3R −4/11 T 7RT 2R −7/13 T 6RT 4R −6/23
TR −1/1 T 4RT 2RT 3/7 T 6RT 4 23/6 T 6RT 3RT 11/17
T 3 3/1 T 3RT 5 14/3 T 6RT 3R −6/17 T 6RT 2RT 2 16/11

T 2R −1/2 T 3RT 4R −3/11 T 6RT 2RT 5/11 T 6RT 2RTR −11/5
T 4 4/1 T 3RT 3RT 5/8 T 5RT 5 24/5 T 5RT 6 29/5

T 3R −1/3 T 3RT 2RT 2 7/5 T 5RT 4R −5/19 T 5RT 5R −5/24
T 2RT 1/2 T 3RT 2RTR −5/2 T 5RT 3RT 9/14 T 5RT 4RT 14/19

T 5 5/1 T 2RT 6 11/2 T 5RT 2RT 2 13/9 T 5RT 3RT 2 23/14
T 4R −1/4 T 2RT 5R −2/9 T 5RT 2RTR −9/4 T 5RT 3RTR −14/9

T 3RT 2/3 T 2RT 4RT 5/7 T 4RT 6 23/4 T 5RT 2RT 3 22/9
T 2RT 2 3/2 T 2RT 3RT 2 8/5 T 4RT 5R −4/19 T 5RT 2RT 2R −9/13
T 2RTR −2/1 T 2RT 3RTR −5/3 T 4RT 4RT 11/15 T 4RT 7 27/4

T 6 6/1 T 2RT 2RT 3 7/3 T 4RT 3RT 2 18/11 T 4RT 6R −4/23
T 5R −1/5 T 2RT 2RT 2R −3/4 T 4RT 3RTR −11/7 T 4RT 5RT 15/19

T 4RT 3/4 T 10 10/1 T 4RT 2RT 3 17/7 T 4RT 4RT 2 26/15
T 3RT 2 5/3 T 9R −1/9 T 4RT 2RT 2R −7/10 T 4RT 4RTR −15/11
T 3RTR −3/2 T 8RT 7/8 T 3RT 7 20/3 T 4RT 3RT 3 29/11
T 2RT 3 5/2 T 7RT 2 13/7 T 3RT 6R −3/17 T 4RT 3RT 2R −11/18

T 2RT 2R −2/3 T 7RTR −7/6 T 3RT 5RT 11/14 T 4RT 2RT 4 24/7
T 7 7/1 T 6RT 3 17/6 T 3RT 4RT 2 19/11 T 4RT 2RT 3R −7/17

T 6R −1/6 T 6RT 2R −6/11 T 3RT 4RTR −11/8 T 4RT 2RT 2RT 3/10
T 5RT 4/5 T 5RT 4 19/5 T 3RT 3RT 3 21/8 T 3RT 8 23/3

T 4RT 2 7/4 T 5RT 3R −5/14 T 3RT 3RT 2R −8/13 T 3RT 7R −3/20
T 4RTR −4/3 T 5RT 2RT 4/9 T 3RT 2RT 4 17/5 T 3RT 6RT 14/17
T 3RT 3 8/3 T 4RT 5 19/4 T 3RT 2RT 3R −5/12 T 3RT 5RT 2 25/14

T 3RT 2R −3/5 T 4RT 4R −4/15 T 3RT 2RT 2RT 2/7 T 3RT 5RTR −14/11
T 2RT 4 7/2 T 4RT 3RT 7/11 T 2RT 8 15/2 T 3RT 4RT 3 30/11

T 2RT 3R −2/5 T 4RT 2RT 2 10/7 T 2RT 7R −2/13 T 3RT 4RT 2R −11/19
T 2RT 2RT 1/3 T 4RT 2RTR −7/3 T 2RT 6RT 9/11 T 3RT 3RT 4 29/8

T 8 8/1 T 3RT 6 17/3 T 2RT 5RT 2 16/9 T 3RT 3RT 3R −8/21
T 7R −1/7 T 3RT 5R −3/14 T 2RT 5RTR −9/7 T 3RT 3RT 2RT 5/13

T 6RT 5/6 T 3RT 4RT 8/11 T 2RT 4RT 3 19/7 T 3RT 2RT 5 22/5
T 5RT 2 9/5 T 3RT 3RT 2 13/8 T 2RT 4RT 2R −7/12 T 3RT 2RT 4R −5/17
T 5RTR −5/4 T 3RT 3RTR −8/5 T 2RT 3RT 4 18/5 T 3RT 2RT 3RT 7/12
T 4RT 3 11/4 T 3RT 2RT 3 12/5 T 2RT 3RT 3R −5/13 T 3RT 2RT 2RT 2 9/7

T 4RT 2R −4/7 T 3RT 2RT 2R −5/7 T 2RT 3RT 2RT 3/8 T 3RT 2RT 2RTR −7/2
T 3RT 4 11/3 T 2RT 7 13/2 T 2RT 2RT 5 13/3 T 2RT 9 17/2

T 3RT 3R −3/8 T 2RT 6R −2/11 T 2RT 2RT 4R −3/10 T 2RT 8R −2/15
T 3RT 2RT 2/5 T 2RT 5RT 7/9 T 2RT 2RT 3RT 4/7 T 2RT 7RT 11/13

T 2RT 5 9/2 T 2RT 4RT 2 12/7 T 2RT 2RT 2RT 2 5/4 T 2RT 6RT 2 20/11
T 2RT 4R −2/7 T 2RT 4RTR −7/5 T 2RT 2RT 2RTR −4/1 T 2RT 6RTR −11/9

T 2RT 3RT 3/5 T 2RT 3RT 3 13/5 T 12 12/1 T 2RT 5RT 3 25/9
T 2RT 2RT 2 4/3 T 2RT 3RT 2R −5/8 T 11R −1/11 T 2RT 5RT 2R −9/16
T 2RT 2RTR −3/1 T 2RT 2RT 4 10/3 T 10RT 9/10 T 2RT 4RT 4 26/7

T 9 9/1 T 2RT 2RT 3R −3/7 T 9RT 2 17/9 T 2RT 4RT 3R −7/19
T 8R −1/8 T 2RT 2RT 2RT 1/4 T 9RTR −9/8 T 2RT 4RT 2RT 5/12

T 7RT 6/7 T 11 11/1 T 8RT 3 23/8 T 2RT 3RT 5 23/5
T 6RT 2 11/6 T 10R −1/10 T 8RT 2R −8/15 T 2RT 3RT 4R −5/18
T 6RTR −6/5 T 9RT 8/9 T 7RT 4 27/7 T 2RT 3RT 3RT 8/13
T 5RT 3 14/5 T 8RT 2 15/8 T 7RT 3R −7/20 T 2RT 3RT 2RT 2 11/8
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