Classical inequalities.

Arithmetic mean-geometric mean [AM-GM] inequality. For any nonnegative numbers a_1, \ldots, a_n ,

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}.$$

Power mean inequality. For positive numbers a_1, \ldots, a_n , and a real number α , let

$$M_{\alpha}(a_1, \dots, a_n) := \begin{cases} \left(\frac{a_1^{\alpha} + \dots + a_n^{\alpha}}{n}\right)^{1/\alpha} & \alpha \neq 0 \\ \sqrt[n]{a_1 \cdots a_n}, & \alpha = 0. \end{cases}$$

Then M_{α} is an increasing function of α unless $a_1 = \cdots = a_n$, in which case M_{α} is constant.

Cauchy's inequality. For arbitrary real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$,

$$(a_1b_1 + \dots + a_nb_n)^2 \le (a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2).$$

Furthermore, equality holds if and only if the vectors (a_1, \ldots, a_n) and (b_1, \ldots, b_n) are proportional.

Cauchy's inequality is equivalent to the triangle inequality for the 2-norm.

Triangle inequality. For any two vectors x, y in \mathbb{R}^n ,

$$||x+y||_2 \le ||x||_2 + ||y||_2.$$

Definition. Suppose that f is a real-valued function defined on an interval and, for any points x, y in the interval,

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}.$$

Then f is convex.

Convex functions have useful properties.

Jensen's inequality. If w_1, \ldots, w_n are positive numbers satisfying $w_1 + \cdots + w_n = 1$, and x_1, \ldots, x_n are any n points in an interval where f is convex, then

$$f(w_1x_1+\cdots+w_nx_n) \le w_1f(x_1)+\cdots+w_nf(x_n).$$

Points of maximum. If f is convex on [a, b], then the maximum value of f is taken at one of the endpoints, i.e.,

$$f(x) \le \max\{f(a), f(b)\}.$$

Weighted AM-GM inequality. If x_1, \ldots, x_n are nonnegative real numbers and w_1, \ldots, w_n are positive numbers satisfying $w_1 + \cdots + w_n = 1$, then

$$\prod_{i=1}^n x_i^{w_i} \le \sum_{i=1}^n w_i x_i.$$

Equality holds if and only if $x_1 = \cdots = x_n$.

Theorem. If a and b are nonnegative numbers and p, q > 1 satisfy 1/p + 1/q = 1, then

$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab,\tag{1}$$

with equality if and only if $a^p = b^q$.

Hölder's inequality. Let x_1, \ldots, x_n and y_1, \ldots, y_n be nonnegative and let p, q > 1 satisfy 1/p + 1/q = 1. Then

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i^q\right)^{1/q}.$$

Minkowski's inequality. If x_1, \ldots, x_n and y_1, \ldots, y_n are nonnegative numbers and $p \ge 1$, then

$$\left(\sum_{i=1}^{n} (x_i + y_i)^p\right)^{1/p} \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} y_i^p\right)^{1/p}.$$

Theorem [Hölder]. Let $X = (x_{ij})$ be an $m \times n$ matrix with nonnegative elements and let w_1, \ldots, w_n be positive numbers satisfying $w_1 + \cdots + w_n = 1$. Then

$$\sum_{i=1}^{m} \prod_{j=1}^{n} x_{ij}^{w_j} \le \prod_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right)^{w_j}.$$

Rearrangement inequality. Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be two sequences of real numbers and suppose $a_1 \leq a_2 \leq \cdots \leq a_n$. For each permutation π of $\{1, 2, \ldots, n\}$ let

$$\Sigma(\pi) := \sum_{k=1}^{n} a_k b_{\pi(k)}.$$

Then Σ is largest when $b_{\pi(1)} \leq \cdots \leq b_{\pi(n)}$ and smallest when $b_{\pi(1)} \geq \cdots \geq b_{\pi(n)}$.

Examples.

1. Let $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n}$. Show that

$$n(n+1)^{1/n} < n + H_n$$

for every $n \in \mathbb{N}$. Hint: AM-GM inequality.

2. Show that if $0 \le a, b, c \le 1$, then

$$\frac{a}{b+c+1} + \frac{b}{c+a+1} + \frac{c}{a+b+1} + (a-1)(b-1)(c-1) \le 1.$$

Hint: convexity.

3. Let $n \in \mathbb{Z}$, $n \neq 0$, -1. Prove that if

$$\frac{\sin^{2n+2} A}{\sin^{2n} B} + \frac{\cos^{2n+2} A}{\cos^{2n} B} = 1$$

holds, then it holds for all $n \in \mathbb{Z}$. Hint: inequality (1).

- 4. Let $a := (m^{m+1} + n^{n+1})/(m^m + n^n)$ where $m, n \in \mathbb{N}$. Prove that $a^m + a^n \ge m^m + n^n$. Hint: Bernoulli's inequality.
- 5. For $x, y, z \ge 0$, establish the inequality

$$x(x-z)^2 + y(y-z)^2 \ge (x-z)(y-z)(x+y-z)$$

and determine when equality holds. Hint: find and use symmetry.

6. For a positive number x and an integer n, prove that

$$\sum_{k=1}^{n} \frac{\lfloor kx \rfloor}{k} \le \lfloor nx \rfloor.$$

Hint: rearrangement inequality.