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During this talk we will explore some properties of infinite series and generating functions. The exercises below are representa-
tive of problems solvable using techniques we will discuss. Solutions and hints will be provided during the talk.

Geometric Series

1. Find the rational number whose decimal expansion is .12357357357 …

2. Find the exact time, in hours/minutes/seconds, at which the hands of a clock first make a straight angle after 12:00.

3. Find the exact time, in hours/minutes/seconds, at which the hands of a clock first make a right angle after 3:00.

Fibonacci Numbers

1. Prove that  ‚
n=1

¶
H-1Ln

fn fn+1
=

1

t2

2. Prove that ‚
n=1

¶ fn

fn+1 fn+2
= 1

3. Prove that ‚
k=0

n n
k fk = f2 n

Infinite Series
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Recursion Relations

10. Solve the relation an+1 = 2 an + 2 for n = 1, 2, 3, 4, …, given that a1 = 2.

11. Solve the relation an+1 = 2 an + n for n = 1, 2, 3, 4, …, given that a0 = 1.

12. Use generating functions to solve the relation tn = tn-1 + 2 tn-2, with t1 = 1 and t2 = 0.

13. Use generating functions to find an explicit formula for the Fibonacci numbers 1, 1, 2, 3, 5, 8, …

Combinatorics
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Partitions

17. The number of partitions of n in which no part occurs more often than d times is the same as the number of partitions of n
in which no term is a multiple of Hd + 1L.

18. The number of partitions of n in which no part appears exactly once is the same as the number of partitions of n in which
no part is congruent to 1 or 5 modulo 6.

19. The number of partitions of n in which no even part is repeated is the same as the number of partitions of n in which no
part occurs more often than 3 times, and is also the number of partitions of n in which no part is divisible by 4.

20. Evaluate the product H1 + xL I1 + x2M I1 + x4M I1 + x8M I1 + x16M I1 + x32M I1 + x64M

21. Evaluate the product I1 + x + x2M I1 + x3 + x6M I1 + x9 + x18M I1 + x27 + x54M I1 + x81 + x162M

Miscellaneous

22. Find any possible "non-standard" dice, i.e. whose faces are not 1-6, but whose expected values agree with standard dice.

23. What is the decimal expansion of 
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 at x = .1? At x = .01?
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 at x = .1? At x = .01? 
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