Mathematical Induction Berkeley Math Circle March 17, 2009

Principle of Mathematical Induction: Let S_n be a statement involving the positive integer n. Then S_n will be true for every positive integer provided the following two conditions:

- **1.** S_1 is true.
- **2.** S_n being true implies S_{n+1} is true.

 $\frac{\text{Problems}}{1} \text{ Prove that } n < 2^n.$

- **2)** Prove that $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.
- **3)** Prove that 5 divides $6^n 1$.
- 4) Find a formula for $1 + 5 + 9 + \cdots + (4n 3)$ and prove it.
- 5) Prove $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$.
- 6) Find a formula for $2^0 + 2^1 + 2^2 + \cdots + 2^n$ and prove it.
- 7) Find a formula for $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\cdots\left(1+\frac{1}{n}\right)$ and prove it.

8) Prove $\begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} + \dots + \begin{pmatrix} n\\2 \end{pmatrix} = \begin{pmatrix} n+1\\3 \end{pmatrix}$. Use this and problem (2) to find a formula for $1^2 + 2^2 + \dots + n^2$.

9) Prove
$$\binom{k}{k} + \binom{k+1}{k} + \cdots + \binom{n}{k} = \binom{n+1}{k+1}$$
 for $0 \le k \le n$.

10) Prove
$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}.$$

11) Prove that the Fibonacci number $F_n = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}$, where ϕ is the golden ratio, $\frac{1+\sqrt{5}}{2}$.

- **12)** Prove $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! 1$.
- **13)** Find *n* if $\frac{1^3+3^3+5^3+\dots+(2n-1)^3}{2^3+4^3+6^3+\dots+(2n)^3} = \frac{199}{242}$.
- 14) Show $n^n > 1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)$.

15) Find a formula for $2 \cdot 5 + 5 \cdot 8 + 8 \cdot 11 + \dots + (3n-1)(3n+2)$ and prove it.

16) Find a formula for $1 \cdot 2^2 \cdot 3 + 2 \cdot 3^2 \cdot 4 + \dots + n(n+1)^2(n+2)$ and prove it.

17) Find a formula for $\frac{1}{1\cdot 3\cdot 5} + \frac{1}{3\cdot 5\cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)(2n+3)}$ and prove it.

18) Find a formula for $\frac{1}{1\cdot 2\cdot 3\cdot 4} + \frac{1}{2\cdot 3\cdot 4\cdot 5} + \cdots + \frac{1}{n(n+1)(n+2)(n+3)}$ and prove it.

19) The linear recursive sequence A_n is defined by $A_1 = 1$, $A_2 = 5$, and $A_n = 21A_{n-2} - 4A_{n-1}$ for $n \ge 3$. Find a formula for A_n and prove it.

20) A set of *n* dominos, each domino 1 inch by 2 inches by $\frac{1}{4}$ inch, is piled into a tower, each domino laying flat. What is the furthest the top domino can overhang the bottom one without the tower collapsing?