
Berkeley Math Circle
Monthly Contest 7 – Solutions

1. In the sequence
77492836181624186886128 . . . ,

all of the digits except the first two are obtained by writing down the products of pairs of consecutive digits. Prove that infinitely
many 6s appear in the sequence.

Solution. Since 868 appears in the sequence and 8 · 6 = 6 · 8 = 48, 4848 appears later in the sequence. Then 4 · 8 = 32, so
3232 appears somewhere later. And so on:

868→ 4848→ 3232→ 666→ 3636→ 1818→ 888→ 6464→ 2424→ 888 · · ·

It is clear that the three last sequences repeat indefinitely. Therefore 6464 appears infinitely many times, and in particular 6
appears infinitely many times.

2. Let k be a rational number greater than 1 (correction by Fengning Ding). Prove that there exist positive integers a, b, c satisfying
the equations

a2 + b2 = c2 (1)
a + c

b
= k. (2)

Solution. Let k = x/y, where x and y are positive integers. We find that x > y. It suffices to note that

a = x2 − y2, b = 2xy, c = x2 + y2

are positive integers satisfying both of the given equations.

3. Four congruent circles are tangent to each other and to the
sides of a triangle as shown.

(a) Prove that ∠ABC = 90◦.

(b) If AB = 3 and BC = 4, find the radius of the circles.
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Solution. Denote the centers of the four circles by D,E, F, G and their tangency points with the sides of 4ABC by
T, U, V, W, X, Y, Z as shown in the diagram. Segments TD and UE are congruent (because they are radii of congruent
circles) and parallel (because they are perpendicular to AB). Therefore DTUE is a parallelogram, in fact a rectangle since
∠DTU = 90◦. Similarly, quadrilaterals EV WF , FXY G, and GY ZD are rectangles. We find that D, G, and F are collinear;
we also have4DEF ∼ 4ABC, since corresponding sides are parallel.

For part (a), we note that DG = EG = FG, so ∠DEF is inscribed in a semicircle centered at G. If ∠DEF is right, so is
∠ABC.

For part (b), let r be the desired radius. Noting AC = 5 by Pythagoras, we have

DF = 4r, DE =
3
5
· 4r =

12r

5
, EF =

4
5
· 4r =

16r

5
.

We now compute AB + BC −AC = 3 + 4− 5 = 2 in another way:

AB + BC −AC = (AT + DE + UB) + (BV + EF + WC)− (CX + FD + ZA)
= (AT −AZ) + (WC −XC) + DE + UB + BV + EF − FD

= 0 + 0 +
12r

5
+ r + r +

16r

5
− 4r

=
(12 + 5 + 5 + 16− 20)r

5
=

18r

5
.



Thus r = 2 · 5/18 = 5/9.

4. Find all pairs (a, b) of positive integers such that
1 + 5a = 6b.

Solution (Based on work by Fengning Ding) The only solution is (1, 1).

It is clear that if b = 1 then a = 1, and that (1, 1) is a solution. Consequently assume b > 1. Then 6b is divisible by 4. On the
other hand, since 5a ≡ 1a = 1 mod 4 for all a, the left side is 2 mod 4. Thus there are no solutions for b > 1.

5. The tower function of twos, T (n), is defined by T (1) = 2 and T (n + 1) = 2T (n) for n ≥ 1. Prove that T (n) − T (n − 1) is
divisible by n! for n ≥ 2.

Solution. Let U(n) = T (n)− T (n− 1). Note that

U(n) = T (n)− T (n− 1) = 2T (n−1) − 2T (n−2) = 2T (n−2)
(
2T (n−1)−T (n−2) − 1

)
= T (n− 1)

(
2U(n−1) − 1

)
.

We first prove two lemmas, the second a refinement of the first.

Lemma 1. U(n− 1) | U(n).

Proof. By induction on n. It is clear when n = 2 and n = 3. Suppose that U(n− 2) | U(n− 1), n ≥ 3. Then

U(n)
U(n− 1)

=
T (n− 1)
T (n− 2)

· 2
U(n−1) − 1

2U(n−2) − 1
.

The first fraction is clearly an integer. Since a | b implies 2a − 1 | 2b − 1, the second fraction is an integer as well.

Lemma 2. If p is a prime and U(k) is divisible by pr, r ≥ 1, then U(k + 1) is divisible by pr+1.

Proof. If p = 2, the r factors of 2 in U(k) must be contained in T (k − 1). Since T (k) > T (k − 1), T (k) has at least r + 1
factors of 2, and so does U(k + 1).

If p > 2, we use induction on n. Let n0 be the smallest value such that p | U(n0). Let r0 be the number of factors of p in
U(n0). Since T (n0 − 1) is a power of 2, the r0 factors are all contained in 2U(n0−1) − 1, i.e.

2U(n0−1) ≡ 1 mod pr0 .

By the preceding lemma, U(n0) is divisible by U(n0−1); however, by definition of n0, U(n0) is divisible by p while U(n0−1)
is not. Consequently

U(n0) = U(n0 − 1) · p · J, (3)

where J is an integer. We find that

2U(n0−1) ≡ 1 mod pr0

2U(n0−1)·J ≡ 1 mod pr0

2U(n0) = 2U(n0−1)·J·p ≡ 1 mod pr0+1,

where we have used the fact that a ≡ b mod pr implies ap ≡ bp mod pr+1. We conclude that pr0+1 | 2U(n0)− 1 | U(n0 + 1).
This completes the base case. The induction step is similar, except that n0 and r0 are replaced by n and r, and equation (3)
follows from the induction hypothesis rather than the definition of n0.

We prove the following statement by strong induction for n ≥ 2:

Lemma 3. U(n) is divisible by all prime powers less than 3 · 2n−2 − 1.



Proof. We can verify the statement by hand for n = 2 and n = 3. Thus we suppose that U(k) = T (k)− T (k − 1) is divisible
by k! for k < n, where n ≥ 4. We prove the second assertion first. Let pr be a prime power less than 3 · 2n−2 − 1. If r > 1,
we note that

pr−1 ≤ pr

2
≤ 3 · 2n−2 − 2

2
= 3 · 2n−3 − 1;

furthermore, at least one of these inequalities is strict, since the first becomes equality only if p = 2, and 2n−1 < 3·2n−2 < 2n

when n ≥ 4. Thus by the induction hypothesis, pr−1 divides Un−1, and we are done by Lemma 2. Now we assume that r = 1.
We may assume that p ≥ 5 since U3 is already divisible by 2 and 3. Then p− 1 is composite, and we can resolve it into prime
powers

p− 1 = qa1
1 qa2

2 · · · qas
s

where each factor qai
i is at most

p− 1
2

<
3 · 2n−2 − 2

2
= 3 · 2n−3 − 1.

We infer that each qai
i divides Un−1, and therefore p− 1 divides Un−1. We now have

p | 2p−1 − 1 | 2Un−1 − 1 | Un,

as desired.

We are now ready to solve the problem. Assume that n ≥ 4; the cases n = 2 and n = 3 are easily checked by hand. Let p be a
prime dividing n!, that is, p ≤ n. The number of factors of p in n! is

R =
∞∑

i=1

⌊
n

pi

⌋
<

∞∑
i=1

n

pi
= n

∞∑
i=1

1
pi

= n · 1/p

1− 1/p
=

n

p− 1
,

so
R ≤ n− 1

p− 1
.

We observe that p | U(p): by hand calculation if p = 2, and because p < 3 · 2p−2 − 1 if p > 3. By Lemma 2, applied n − p
times,

pn−p+1 | U(n).

Since n− p + 1 ≥ n−1
p−1 if n ≥ p, we have pR | U(n), as desired.


