
Berkeley Math Circle
Monthly Contest 6 – Solutions

1. Let p, q, and r be distinct primes. Prove that p + q + r + pqr is composite.

Solution. Note that at most one of p, q, and r can equal 2. If p = 2, then q and r are both odd, but pqr is even. Therefore
their sum is even. Similarly, if q or r is 2, then p + q + r + pqr is even. Finally, if p, q, and r are all odd, then so is pqr, and
p + q + r + pqr is even. Thus p + q + r + pqr is always divisible by 2, and since it is obviously greater than 2, it must be
composite.

2. The sequence
5, 9, 49, 2209, . . .

is defined by a1 = 5 and an = a1a2 · · · an−1 + 4 for n > 1. Prove that an is a perfect square for n ≥ 2.

Solution. This is clear for n = 2. We use the relation

an−1 = a1a2 · · · an−2 + 4
a1a2 · · · an−2 = an−1 − 4

for n ≥ 3 to transform an:

an = a1a2 · · · an−2an−1 + 4
= (an−1 − 4) an−1 + 4

= a2
n−1 − 4an−1 + 4

= (an−1 − 2)2 .

This is clearly the square of an integer.

3. The integers from 1 to 13 are arranged around several rings such that every number appears once and every ring contains at
least one two-digit number. Prove that there exist three one-digit numbers adjacent to one another on one ring.

Solution. For any n ∈ S = 1, 2, . . . , 13, define f(n) to be the number immediately clockwise of n on the same ring, where
f(n) = n if n lies on a one-element ring. Notice that f is a bijective function, since every number is immediately clockwise of
exactly one number. Notice that there are four numbers n ∈ S such that n has two digits, four numbers n such that f(n) has
two digits, and four numbers n such that f(f(n)) has two digits. This leaves at least 13 − 4 − 4 − 4 = 1 number n such that
n, f(n), and f(f(n)) are all one-digit numbers. No two of them can be equal, or else the ring containing them would have no
two-digit numbers, so n, f(n), and f(f(n)) are the desired adjacent one-digit numbers.

4. Let ABC be a triangle with ∠ABC = 90◦. Points D and E on AC and BC respectively satisfy BD ⊥ AC and DE ⊥ BC.
The circumcircle of4CDE intersects AE at two points, E and F . Prove that BF ⊥ AE.

Solution: By Power of a Point,

AF ·AE = AD ·AC;

because4ABC is right,

AD ·AC = AB2.

Combining,
AF ·AE = AB2.

On the other hand, if F ′ is the foot of the altitude from B to
AE, then

AF ′ ·AE = AB2.

Consequently AF ′ = AF and F ′ = F .
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Remark. The right angle at D is a red herring. The proof is valid for any segment DE parallel to leg AB.

5. Let a1, a2, . . . , an be distinct integers. Prove that there do not exist two nonconstant integer-coefficient polynomials p and q
such that

(x− a1)(x− a2) · · · (x− an)− 1 = p(x)q(x) (1)

for all x.

Solution. Assume for the sake of contradiction that p and q exist. If we substitute x = ai for i = 1, . . . , n, the left side of (1)
becomes −1. Since p(ai) and q(ai) are both integers, we either have

p(ai) = 1, q(ai) = −1

or
p(ai) = −1, q(ai) = 1.

In either case,
(p + q)(ai) = 0.

Thus p + q is a polynomial with n distinct roots a1, a2, . . . , an. Such a polynomial must have degree at least n—unless it is
the zero polynomial.

Case 1. p + q has degree ≥ n. Then one of p and q has degree ≥ n, and the other, of course, has degree ≥ 1. It follows that pq
has degree ≥ n + 1, a contradiction since the left side of (1) has degree n.

Case 2. p(x) + q(x) = 0 for all x. Substituting q = −p into (1),

(x− a1)(x− a2) · · · (x− an)− 1 = −p(x)2.

Now substitute an integer for x that is so huge that each of the factors (x−ai) is greater than 1. This makes the left side strictly
positive. Since the right side is negative or zero, we have a contradiction.


