Berkeley Math Circle Monthly Contest 2 – Solutions Due November 4, 2008

1. Find all positive integers p such that p, p + 4, and p + 8 are all prime.

Solution. If p = 3, then p + 4 = 7 and p + 8 = 11, both prime. If $p \neq 3$, then p is not a multiple of 3 and is therefore of one of the forms 3k + 1, 3k + 2 ($k \ge 0$) If p = 3k + 1, then p + 8 = 3k + 9 = 3(k + 3), which is not prime since k + 3 > 1. If p = 3k + 2, then p + 4 = 3k + 6 = 3(k + 2), which is not prime since k + 2 > 1. Thus p = 3 is the only solution with all three numbers prime.

2. Each vertex of a regular heptagon is colored either red or blue. Prove that there is an isosceles triangle with all its vertices the same color.

Solution. Denote the vertices of the heptagon by ABCDEFG. Since an alternating arrangement cannot be continued all the way around the heptagon, two adjacent vertices must be the same color, say A and B. If any of C, E, G shares this color, we are done since triangles ABC, ABE, and ABG are all isosceles. On the other hand, if C, E, and G are all of the opposite color, we are also done because triangle CEG is isosceles. Thus in all cases we can find an isosceles triangle.

3. Let a, b, and c be positive real numbers satisfying $a^b > b^a$ and $b^c > c^b$. Does it follow that $a^c > c^a$?

Solution. Yes. We have

$$(a^{c})^{b} = (a^{b})^{c} > (b^{a})^{c} = (b^{c})^{a} > (c^{b})^{a} = (c^{a})^{b};$$

the desired inequality follows by taking the bth root.

4. Let n be a positive integer and let S be the set $\{1, 2, ..., n\}$. Define a function $f: S \to S$ by

$$f(x) = \begin{cases} 2x & \text{if } 2x \le n, \\ 2n - 2x + 1 & \text{otherwise.} \end{cases}$$

Define $f^2(x) = f(f(x))$, $f^3(x) = f(f(f(x)))$, and so on. If m is a positive integer satisfying $f^m(1) = 1$, prove that $f^m(k) = k$ for all $k \in S$.

Solution. First note that

 $f(x) \equiv \pm 2x \mod 2n + 1.$

It follows that

$$f^p(x) \equiv \pm 2^p x \mod 2n+1.$$

Thus if $f^m(1) = 1, 2^m \equiv \pm 1$ and so, for any $k \in S$,

$$f^m(k) \equiv \pm 2^m k \equiv \pm k \mod 2n+1$$

that is, $f^m(k) \pm k = j(2n+1)$ for some integer j and some choice of the sign. Since

$$0 < 1 + 1 \le f^m(k) + k \le n + n < 2n + 1,$$

the plus sign is invalid. Thus the minus sign holds, and since

$$-(2n+1) < 1 - n \le f^m(k) - k \le n - 1 < 2n + 1,$$

we get j = 0, i.e. $f^{m}(k) = k$.

5. This problem was invalid on the contest. Correct formulation as of December 9. Let ω_1, ω_2 , and ω_3 be three circles passing through the origin O of the coordinate plane but not tangent to each other or to either axis. Denote by $(x_i, 0)$ and $(0, y_i)$, $1 \le i \le 3$, the respective intersections (besides O) of circle ω_i with the x and y axes. Prove that ω_1, ω_2 , and ω_3 have a common point $P \ne O$ if and only if the points $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) are collinear.

Solution. First of all, note that if a circle passes through (0, 0), $(x_i, 0)$, and $(0, y_i)$, its center must be $(\frac{x_i}{2}, \frac{y_i}{2})$, the midpoint of the side opposite the right angle at O. Also note that the three points $(\frac{x_i}{2}, \frac{y_i}{2})$ are related to (x_i, y_i) by a dilation about O; thus the former three will be collinear if and only if the latter three are. It suffices to prove that the circles have a second common point if and only if their centers are collinear.

If the centers are collinear, all three circles are symmetric about the line of centers. Thus the reflection of O about this line is a second common point of the three circles. Conversely, assume that the circles have two common points, O and P. Then all three centers lie on the perpendicular bisector of OP.