
Berkeley Math Circle
Monthly Contest 2 – Solutions

1. A building has seven rooms numbered 1 through 7, all on one floor, and any number of doors connecting these rooms. These
doors may be one-way, admitting motion in only one of the two directions, or two-way. In addition, there is a two-way door
between room 1 and the outside, and a treasure in room 7. Your object is to choose the arrangement of the rooms and the
locations of the doors in such a way that

(a) it is possible to enter room 1, reach the treasure, and make it back outside,

(b) the minimum number of steps required to to this (each step consisting of walking through a door) is as large as possible.

Solution. On the way to the treasure, no room need be entered twice; otherwise the path could be shortened by skipping the
loop. Thus, the minimal path to the treasure, if it exists, is at most 7 steps long. Similarly, the minimal path from the treasure
to the outside is at most 7 steps long, so the total number of steps cannot exceed 14. The arrangement of the rooms in a line,
with 1 and 7 at opposite ends and two-way doors between all adjacent rooms, shows that 14 is attainable.

2. Prove that there is exactly one way to place circles in four of
the blank squares of the cross-equation puzzle at right such
that, no matter what natural numbers are placed in the cir-
cled squares, the five uncircled squares can be filled with nat-
ural numbers that make the three horizontal and three vertical
equations true.

Solution. If a, e, f , and h are circled, the equations
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b = e + h, d = e + f, g = d + a, c = b + a

define b, d, g, and c in such a way that the first two horizontal and first two vertical equations are satisfied. Then since

g + h = d + a + h = e + f + a + h = b + f + a = c + f,

a value of k can be found which completes the puzzle. Note that b, c, d, g, and k are the sum of two other numbers in the
puzzle. If any of them is circled and then filled with a 1, the puzzle will be unsolvable since no two natural numbers add to 1.
Thus a, e, f , and h is the only permissible circled quadruplet.

3. A number is called a j-half if it leaves a remainder of j when divided by 2j + 1.

(a) Prove that for any k, there is a number which is simultaneously a j-half for j = 1, 2, . . . , k.

(b) Prove that there is no number which is a j-half for all positive integers j.

Solution.

(a) Note that a number n is a j-half if and only if 2n has a remainder of 2j when divided by 2j + 1, which happens exactly
when 2n + 1 is divisible by 2j + 1. Thus

n =
3 · 5 · 7 · · · (2k + 1)− 1

2
,

which is clearly an integer, is a j-half for j = 1, 2, 2, . . . , k.

(b) If n is any positive integer, take j > n. Then n obviously leaves a remainder of n when divided by 2n + 1, not j as was
desired.



4. Let AOB be a 60-degree angle. For any point P in the interior of ∠AOB, let A′ and B′ be the feet of the perpendiculars from
P to AO and BO respectively. Denote by r and s the distances OP and A′B′. Find all possible pairs of real numbers (r, s).

Solution. Extend A′P to meet OB at Z. Notice that, because
∠OA′P and ∠OB′P are both right, the circle with diame-
ter OP passes through O, P , A′, and B′. Thus ∠B′OP =
∠B′A′P since both intercept the same arc on this circle, and
4ZOP ∼ 4ZA′B′ by AA. We get
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because ZOA′ is a 30-60-90 triangle. Since r can obviously
take on any value, the possibilities for (r, s) are (r, r

√
3

2 ) for
every positive real r.
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5. Prove that for every positive integer n, there is an integer x such that x2 − 17 is divisible by 2n.

Solution. We prove this by induction on n. If n = 1, 2, or 3, then x = 1 works. Suppose that x2 − 17 is divisible by 2n and
n ≥ 3. We seek to find y such that y2 − 17 is divisible by 2n+1. Let

x2 − 17 = k · 2n.

If k is even, we are done since x2 − 17 is divisible by 2n+1. If k is odd, k = 2m + 1, we have

(
x + 2n−1

)2 − 17 = x2 + 2 · x · 2n−1 + 22(n−1) − 17

= x2 − 17 + x · 2n + 22n−2

= (2m + 1) · 2n + x · 2n + 22n−2

= 2n(x + 1) + 2n+1
(
m + 2n−3

)
.

Since x is obviously odd and n ≥ 3, this is a multiple of 2n+1, and y = x + 2n−1 works.


