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Let’s imagine that we introduce a new coin system. Instead of using pennies, nickels, dimes, and
quarters, let’s say we agree on using only 4-cent and 7-cent coins. One might point out the following
flaw of this new system: certain amounts cannot be exchanged, for example, 1, 2, or 5 cents. On
the other hand, this deficiency makes our new coin system more interesting than the old one,
because we can ask the question: “which amounts can be changed?” We will see shortly that there
are only finitely many integer amounts that cannot be exchanged using our new coin system. A
natural question, first tackled by Ferdinand Georg Frobenius and James Joseph Sylvester in the
19’th century, is: “what is the largest amount that cannot be exchanged?” As mathematicians,
we like to keep questions as general as possible, and so we ask: given coins of denominations a
and b—positive integers without a common factor—can you give a formula g(a, b) for the largest
amount that cannot be exchanged using the coins a and b? This problem and its generalization for
coins a1, a2, . . . , an is known as the Frobenius coin-exchange problem.

To study the Frobenius number g(a, b), we use the Euclidean Algorithm. For integers a and b that
have no common factor, this algorithm yields integers x and y such that ax + by = 1.

(1) Find g(4, 7).

(2) Show that g(5, 11) = 39.

(3) Find x and y such that 4x + 7y = 1.

(4) Find another x and y such that 4x + 7y = 1.

(5) Find x and y such that 5x + 11y = 1.

(6) Find x and y such that 5x + 11y = 39.

(7) Show that, if t is a given integer, we can always find integers x and y such that 4x + 7y = t.
Generalize to two coins a and b with no common factor.

(8) Show that, if t is a given integer, we can always find integers x and y such that 4x + 7y = t
and 0 ≤ x ≤ 6. Generalize to two coins a and b with no common factor.

(9) Show that the following recipe for determining whether or not a given amount t can be changed
(using the coins 4 and 7) works: Given t, find integers x and y such that 4x + 7y = t and
0 ≤ x ≤ 6. Then t can be changed precisely if y ≥ 0. Generalize to two coins a and b with no
common factor.

(10) Use the previous argument to re-compute g(4, 7). Generalize your argument to compute g(a, b),
for any two coins a and b with no common factor.

(11) Prove that exactly half of the amounts between 1 and (a− 1)(b− 1) can be changed.



Now it’s time for something new. Every infinite sequence (a0, a1, a2, . . . ) comes with a handy
analytic gadget, namely its generating function, which is defined as

g(x) =
∞∑

k=0

ak xk.

If you know some Analysis (and you don’t have to know any Analysis for these exercises), this looks
like a power series, however, we don’t have to worry about convergence of this series, but rather
treat it as a formal power series. In the course of the exercises, you will get a feeling for what this
means.

(1) Show that 1+x+x2 +x3 + · · ·+xn = 1−xn+1

1−x for any number x. Conclude that the infinite sum
1 + x + x2 + x3 + · · · = 1

1−x (if we worry about convergence, we should demand that |x| < 1).
We just computed the generating function for the sequence ak consisting of all 1’s:∑

k≥0

xk =
1

1− x
.

Compute the sequence (ak) that gives rise to the generating function
∑

k≥0 ak xk =
(

1
1−x

)2
,

by looking at the product
(
1 + x + x2 + x3 + · · ·

) (
1 + x + x2 + x3 + · · ·

)
. If you look at the

result, can you think of a different way to compute (ak)?

(2) Now we define a sequence recursively. Namely, we set a0 = 0 and an+1 = 2an + 1 for n ≥ 0.

(a) Conjecture a formula for ak by experimenting.

(b) Now put the sequence (ak) into a generating function g(x) and find a formula for g(x) by
utilizing the recursive definition of ak.

(c) Expand your formula for g(x) into partial fractions, and use the result to prove your
conjectured formula for ak.

(3) We define a second recursive sequence by setting a0 = 1 and an+1 = 2an + n for n ≥ 0. Find a
formula for ak.

It’s time to go back to the Frobenius problem. Let us introduce the counting sequence

rk = #
{

(m, n) ∈ Z2 : m, n ≥ 0, ma + nb = k
}

.

In words, rk counts the representations of k ∈ Z≥0 as nonnegative linear combinations of a and b.
Thus, rab−a−b = 0, and ab− a− b is the largest integer k for which rk = 0.

(1) Prove that rk+ab = rk + 1.

(2) Compute the generating function for the sequence

ak =

{
1 if k is a multiple of 7,

0 otherwise.



(3) Prove that, for rk = #
{

(m, n) ∈ Z2 : m, n ≥ 0, ma + nb = k
}

,

∑
k≥0

rk xk =
(

1
1− xa

)(
1

1− xb

)
.

(4) Now let sk =

{
1 if k can be changed,
0 otherwise.

Prove that

∑
k≥0

sk xk =
1− xab

(1− xa)(1− xb)
.

A few remarks

The simple-looking formula for g(a, b) that you have found inspired a great deal of research into
formulas for the general Frobenius number g (a1, a2, . . . , ad), with limited success: While it is safe to
assume that the formula for g(a, b) has been known for more than a century, no analogous formula
exists for d ≥ 3. The case d = 3 is solved algorithmically, i.e., there are efficient algorithms to
compute g(a, b, c), and in form of a semi-explicit formula. The Frobenius problem for fixed d ≥ 4
has been proved to be computationally feasible, but no efficient practical algorithm for d = 4 is
known.

A second classic theorem for the case d = 2, which you have proved and Sylvester published as a
math problem in the Educational Times more than a century ago [2], says that exactly half of the
amounts between 1 and (a− 1)(b− 1) cannot be changed using the coins a and b.

For more, we refer to a research monograph on the Frobenius problem [1]; it includes more than
400 references to articles written about the Frobenius problem.
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