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1. Introduction

1.1. The power of the mass point technique. This session will introduce a technique that simplifies
calculations of ratios in geometric figures in an intuitive way by merging algebra, geometry and basic physics.
When the method can be applied, it is far faster than the standard techniques of vectors and area addition.
The method is as simple as balancing a see-saw.

Let us begin with a problem involving an old geometry concept. Given a triangle, a cevian is a line
segment from a vertex to an interior point of the opposite side. (The ‘c’ is pronounced as ‘ch’). Figure 1a
illustrates two cevians AD and CE in △ABC. Cevians are named in honor of the Italian mathematician
Giovanni Ceva who used them to prove his famous theorem in 1678 (cf. Theorem 4). Problem 1 below is
not that famous, but it certainly presents a situation that you may stumble upon in everyday life.
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Figure 1. A Triangle with Two Cevians and the Centroid of a Tetrahedron

Problem 1. In △ABC, side BC is divided by D in a ratio of 5 to 2 and BA is divided by E in a ratio of 3
to 4 as shown in Figure 1a. Find the ratios in which F divides the cevians AD and CE, i.e. find EF : FC
and DF : FA.

It is true that Problem 1 can be successfully attacked by vectors or area addition, thereby reducing it to
elementary algebra. Yet, we shall see in this session that a much easier and more intuitive solution would
result from assigning the masses to the vertices of △ABC in such a way that F becomes the balancing point,
and the problem is reduced to elementary arithmetic.

Examples illustrating the power of our mass-point technique do not need to be constrained to the plane.
The next problem for instance is set up in 3-dimensional space. Recall that a tetrahedron is the mathematical
word for what we know as a pyramid: a polyhedron with four triangular faces. Recall that the centroid of a
triangle is the point of concurrence of the three medians. (cf. Exercise 3).

Problem 2. Consider tetrahedron ABCD, and mark the centroids of its four faces by E, F, G and H
(cf. Fig. 1b). Prove that the four segments connecting vertices to the centroids of the opposite faces are
concurrent, i.e. that AE, BF , CG and DH intersect at a point J , called the centroid of the tetrahedron. In
what ratio does this centroid J divide the four segments. For example, what is AJ : JE?

1.2. Archimedes’ lever. The underlying idea of the mass point technique is the principle of the lever,
which Archimedes used to discover many of his results. You may have heard the boast of Archimedes upon
discovering the lever, “Give me a place to stand on, and I will move the earth.” Although Archimedes knew
his results were correct, based on reasoning with the lever, such justification was unacceptable as proof in
Greek mathematics, so he was forced to think of very clever proofs using Euclidean geometry to convince the
mathematical community at the time that his results were correct. These proofs are masterpieces of reasoning
and the reader is recommended to read some of them to appreciate the elegance of the mathematics.

However, in this session we are going to use Archimedes’ lever. The basic idea is that of a see-saw with
masses at each end. The see-saw will balance if the product of the mass and its distance to the fulcrum is

Date: November 27, 2007 at the Berkeley Math Circle.



2 TOM RIKE OAKLAND HIGH SCHOOL

the same for each mass. For example, if a baby elephant of mass 100 kg is 0.5 m from the fulcrum, then
an ant of mass 1 gram must be located 50 km on the other side of the fulcrum for the see-saw to balance
(cf. Fig. 2, not drawn to scale): distance × mass = 100 kg× 0.5 m = 100, 000 g× 0.0005 km = 1 g × 50 km.

0.5 m 50 km
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| {z } | {z }

Figure 2. Balancing on a See-saw: Elephant and Ant (artwork by Zvezda)

As we shall see, the uses of the lever are more far-reaching than one might imagine. For instance, here is
another problem for you to consider. It extends our mass point technique to transversals: a transversal of
lines l and m is a line that joins a point on l and a point on m. Note that a transversal of two sides in a
triangle is a generalization of what we defined earlier as a cevian.

Problem 3. In Figure 3, ED joins points E and D on the sides of △ABC forming a transversal. Cevian
BG divides AC in a ratio of 3 to 7 and intersects the transversal ED at point F . Find the ratios EF : FD
and BF : FG.

A

B

C

D
E F

G

4

3

3

5

2

7

Figure 3. A Transversal Problem

2. Definitions and Properties: in the Familiar Setting of Euclidean Geometry

To begin, let me say that I misunderstood mathematics for a long time and it was not until I realized
that the definitions, postulates and theorems were the key to everything, that I finally began making some
progress. In the end, it still depends on how clever you can be in using the definitions, postulates and
theorems to arrive at conjectures and prove more theorems. But if you don’t understand these fundamentals
completely, you will not go very far in mathematics. This session follows the axiomatic approach to mass
points found in Hausner’s 1962 paper [5].

2.1. Objects of mass point geometry. When developing a new theory, the objects in it must be clearly
defined, so there are no ambiguities later on. For example, in ordinary high school geometry, you defined
what triangles are and explained what it means for two of them to be congruent. In the slightly more
advanced setting of, say, coordinate geometry, it becomes necessary to define even more basic objects, such
as a “point” – as a pair of numbers (x, y) called the coordinates of the points, and a “line” – as the set of
points which are solutions to linear equations Ax + By = C; one would also define what it means for two
points P and Q to be the same – P = Q if their corresponding coordinates are equal. In this vein, we define
below the main objects of our new Mass Point theory.

Definition 1. A mass point is a pair (n, P ), also written as nP , consisting of a positive number n, the mass,
and a point P in the plane or in space.

Definition 2. We say that two mass points coincide, nP = mQ, if and only if n = m and P = Q, i.e. they
correspond to the same ordinary point with the same assigned mass.

2.2. Operations in mass point geometry. What makes our theory so interesting and powerful is that it
combines objects and ideas from both geometry and algebra, and hence makes it necessary for us to define
from scratch operations on mass points. How can we add two mass points?

Definition 3 (Addition). nE + mA = (n + m)F where F is on EA and EF : FA = m : n.

This is the crucial idea: adding two mass points nE and mA results in a mass point (n + m)F so that

(a) F is located at the balancing point of the masses on the line segment EA, and
(b) the mass at this location F is the sum n + m of the two original masses.
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Definition 4 (Scalar Multiplication). Given a mass point (n, P ) and a scalar m > 0, we define multiplication
of a mass point by a positive real number as m(n, P ) = (mn, P ).

2.3. Basic properties in mass point geometry.

Property 1 (Closure). Addition produces a unique sum.

Property 2 (Commutativity). nP + mQ = mQ + nP .

Property 3 (Associativity). nP + (mQ + kR) = (nP + mQ) + kR = nP + mQ + kR.

Property 4 (Idempotent). nP + mP = (n + m)P .

Property 5 (Distributivity). k(nP + mQ) = knP + kmQ.

2.4. More operations on mass points?

Property 6 (Subtraction). If n > m then nP = mQ + xX may be solved for the unknown mass point xX.
Namely, xX = (n − m)R where P is on RQ and RP : PQ = m : (n − m).

Example 1. Given mass points 3Q and 5P , find the location and mass of their difference 5P − 3Q.

3. Fundamental Examples and Exercises

Let’s take a look at the first problem in the introduction. In order to have D as the balancing point of
BC we assign a mass of 2 to B and a mass of 5 to C. Now on side BA to have E as the balancing point we
assign 2 · 3/4 = 3/2 to A. Then at the balancing points on the sides of the triangle, we have 2B + 5C = 7D
or 2B + 3

2
A = 7

2
E. (cf. Fig. 4a)
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Figure 4. Two Cevians Solved and Medians Concurrent

The center of mass 8.5X of the system { 3

2
A, 5C, 2B} is located at the sum 3

2
A + 2B + 5C, which can be

calculated in two ways according to our associativity property:
7

2
E + 5C = (3

2
A + 2B) + 5C = 8.5X = 3

2
A + (2B + 5C) = 3

2
A + 7D.

Thus, by definition of addition, X is located on the one hand on segment EC, and on the other hand
on segment AD, i.e. at their intersection point F . Hence F is the fulcrum of the see-saw balancing 3

2
A

and 7D, and of the see-saw balancing 5C and 7

2
E. This means that DF : FA = 3/2 : 7 = 3 : 14 and

EF : FC = 5 : 7/2 = 10 : 7. All of this can be written down immediately on the figure in a matter of
seconds. �

Many of the following exercises and examples in this section are based on those in an article by Sitomer
and Conrad [16]. Since the article is no longer in print and not available in most libraries, I want to make
available to you some of the examples from their presentation which expanded my understanding of this
technique.

Exercise 1 (Warm-up). If G is on BY , find x and BG : GY provided that

(a) 3B + 4Y = xG;
(b) 7B + xY = 9G.

Example 2. In △ABC, D is the midpoint of BC and E is the trisection point of AC nearer A (i.e.
AE : EC = 1 : 2). Let G = BE ∩ AD. Find AG : GD and BG : GE.

Exercise 2 (East Bay Mathletes, April 1999). In △ABC, D is on AB and E is the on BC. Let F =
AE ∩ CD, AD = 3, DB = 2, BE = 3 and EC = 4. Find EF : FA in lowest terms.

Exercise 3. Show that the medians of a triangle are concurrent and the point of concurrency divides each
median in a ratio of 2:1.

(Hint: Assign a mass of 1 to each vertex, cf. Fig. 4b.)

PST 1. (Problem Solving Technique) Given two triangles with the same altitude, their areas are in the
same ratio as their bases. In addition, if the triangles have have equal bases, then they have equal areas.
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Example 3. Show that all six regions obtained by the slicing a triangle via its three medians have the same
area.

Exercise 4 (Varignon’s Theorem). If the midpoints of consecutive sides of a quadrilateral are connected,
the resulting quadrilateral is a parallelogram.

(Hint: Assign mass 1 to each vertex of the original quadrilateral and find the center of mass in two ways:
why does this center lie on each of the line segments joining midpoints of opposite sides?)

Exercise 5. In quadrilateral ABCD, E, F , G, and H are the trisection points of AB, BC, CD, and DA
nearer A, C, C, A, respectively. Show that EFGH is a parallelogram.

(Hint: Use the point K = EG ∩ FH .)

Exercise 6. Generalize Exercise 5 to points E, F , G, and H which divide the quadrilateral sides in corre-
sponding ratios of m : n.

4. Angle Bisectors, Combining Mass Points and Area, Mass Points in Space

The following problems extend the fundamental idea of mass points in several directions.

4.1. Using angle bisectors. To start with, you will need the following famous theorem, which you may
have heard in a high school geometry class:

Theorem 1 (Angle Bisector Theorem). An angle bisector in a triangle divides the opposite side in the same

ratio as the other two sides. More precisely, in △ABC, if ray
−−→
BD bisects ∠ABC then AD : DC = AB : BC.

Exercise 7. In △ABC, let AB = c, BC = a and CA = b. Assign a mass to each vertex equal to the length
of the opposite side, resulting in mass points aA, bB and cC. Show that the center of mass of this system
is located on each angle bisector at a point corresponding to the mass point (a + b + c)I.

Exercise 8. Use Exercise 7 to prove that the angle bisectors of the angles of a triangle are concurrent.

Those who know the definition of sinA may recall the following well-known theorem.

Theorem 2 (Law of Sines). In △ABC where the opposite sides of ∠A, ∠B, and ∠C are a, b, and c,
respectively, and R is the circumradius of △ABC:

a

sin A
=

b

sinB
=

c

sin C
= 2R.

Exercise 9. In △ABC with the bisector of ∠B intersecting AC at D:

(a) Show that AD : DC = sin C : sin A, or equivalently, AD sin A = DC sin C.
(b) Let sin A = 4/5 and the sinC = 24/25. The bisector BD intersects median AM at point E. Find

AE : EM and BE : ED.

4.2. Combining mass points and areas. As you attempt to solve the following problem keep in mind
that it can be solved via a combination of mass points and area addition. This leads to a generalization
known as Routh’s Theorem (to be discussed later on). Have fun!
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Figure 5. Combining Mass Points with Area Addition and Routh’s Theorem

Problem 4. In △ABC, D, E, and F are the trisection points of AB, BC, and CA nearer A,B,C, respec-
tively. (cf. Fig. 5a)

(a) Let BF ∩ AE = J . Show that BJ : JF = 3 : 4 and AJ : JE = 6 : 1.
(b) Let CD ∩ AE = K and CD ∩ BF = L. Extend part (a) of this problem to show that DK : KL :

LC = 1 : 3 : 3 = EJ : JK : KA = FL : LJ : JB.
(c) Use parts (a) and (b) and to show that the area of triangle △JKL is one-seventh the area of △ABC.
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(d) Generalize this problem using points which divide the sides in a ratio of 1 : n in place of 1 : 2 to
show the ratio of the areas is (1 − n)3 : (1 − n3).

Part (d) can be generalized even further using different ratios on each side. It is known as Routh’s
Theorem.(cf. Fig. 5b)

Theorem 3. (Routh) If the sides AB, BC, CA of △ABC are divided at D, E, F in the respective ratios
of 1 : l, 1 : m, 1 : n, then the cevians CD, AE, and BF form a triangle whose area is

(lmn − 1)2

(lm + l + 1)(mn + m + 1)(nl + n + 1)

For example, check that when the ratios are all equal, l = m = n, Routh’s formula yields the answer in
part(d). The proof of this theorem is beyond the scope of the present session. See Coxeter [4], Niven [11],
and Klamkin [8] for various proofs of this theorem. The proof by Coxeter uses a generalization of mass
points called areal coordinates, or normalized barycentric coordinates. It is only four lines long.

4.3. Mass points in space. Going in another direction, an extension of the mass point technique can be
used to solve problems in space: in 3 dimensions. This is illustrated in Example 4, and Exercises 10 and 11.
Thus, for the rest of this subsection, we shall assume the same definitions and properties of addition of mass
points in space as those in the plane.

Example 4. Let ABCD be a tetrahedron (cf. Fig. 1b). Assign masses of 1 to each of the vertices. Let H
be the point in △ABC such that 1A+1B + 1C = 3H . Let J be the point on DH such that 1D +3H = 4J .
What is the ratio of DJ to JH?

Now let us apply mass points in space to a couple of exercises.

Exercise 10. Fill in the details of the solution above for Problem 2. In particular, show that the four
segments from the vertices to centroids of the opposite faces are concurrent at the point J .

In a tetrahedron, opposite edges are those pairs of edges that have no vertex in common.

Exercise 11. Show that the three segments joining the midpoints of opposite edges of a tetrahedron bisect
each other. (cf. Fig. 6b)

5. Splitting Masses, Altitudes, Ceva and Menelaus
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Figure 6. Transversal Problem 3 Solution and Tetrahedron in Exercise 11

5.1. Splitting masses. Let’s now take a look at Problem 3 stated in the Introduction. This is not as
intuitive as the two cevian Problem 1. But once it is shown to work, we can then solve a whole new class of
problems with mass points. So let’s do it!

Splitting mass points as in mP + nP = (m + n)P is the technique to use when dealing with transversals.
The actual assignment of masses is as follows. As a first approximation, assign 4 to B and 3 to A to balance
AB at E. Then to balance AC at G assign 9

7
to C. To balance 9

7
C at point D, 18

35
B is needed. So we

now have (4 + 18

35
)B. This gives 44

5
F as the center of mass for the masses at A, B and C. Indeed, using

associativity of addition:
30

7
G + (4B + 18

35
B) = (3A + 9

7
C) + 4B + 18

35
B = (3A + 4B) + (18

35
B + 9

7
C) = 7E + 9

5
D,

from where the center of mass lies on both ED and BG, i.e. it is located at point F .
The sought after ratios can now be read directly from the diagram:

EF : FD = 9/5 : 7 = 9 : 35 and BF : FG = 30/7 : 158/35 = 150 : 158 = 75 : 79. �

Here is another example.
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Example 5. In △ABC, let E be on AB such that AE : EB = 1 : 3, let D be on BC such that BD : DC =

2 : 5, and let F be on ED such that EF : FD = 3 : 4. Finally, let ray
−−→
BF intersect AC at point G. Find

AG : GC and BF : FG.

Try to use this technique in the following exercises.

Exercise 12. In Example 5, AE : EB = 1 : 3, BD : DC = 4 : 1, EF : FD = 5 : 1. Show that
AG : GC = 4 : 1 and BF : FG = 17 : 7.

5.2. Problems which involve altitudes. Let BD be an altitude of acute △ABC. Note that AD ·
DC/BD = DC · AD/BD. So the appropriate masses to assign to A and C, respectively, are DC/BD
and AD/BD in order to have the balancing point on AC be at D. Those of you who know some trigonome-
try will recognize DC/BD = 1/ tanC = cotC and AD/BD = 1/ tanA = cotA. Therefore, assigning masses
proportional to cotA and cotC to the points C and A, respectively, will balance the side at the foot of the
altitude.

Exercise 13. Let △ABC be a right triangle with AB = 17, BC = 15, and CA = 8. Let CD be the
altitude to the hypotenuse and let the angle bisector at B intersect AC at F and CD at E. Show that
BE : EF = 15 : 2 and CE : ED = 17 : 15.

Problem 5. The sides of △ABC are AB = 13, BC = 15 and AC = 14. Let BD be an altitude of the
triangle. The angle bisector of ∠C intersects the altitude at E and AB at F . Find CE : EF and BE : ED.

Exercise 14. Prove that the altitudes of an acute triangle are concurrent using mass points.
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Figure 7. The Theorem of Ceva and the Theorem of Menelaus

5.3. Ceva, Menelaus and Property 3.

Theorem 4 (Ceva’s Theorem). Three cevians of a triangle are concurrent if and only if the products of the
lengths of the non-adjacent parts of the three sides are equal. For example, for △ABC in Figure 7a, this
means that the three cevians are concurrent iff abc = xyz.

Theorem 5 (Menelaus’ Theorem). If a transversal is drawn across three sides of a triangle (extended if
necessary), the products of the non-adjacent segments are equal. For example, for △ABC with transversal
intersecting AB in D, BC in E, and AC, externally, in F , the conclusion is AD

DB
·BE

EC
·CF

FA
= 1, or equivalently,

AD · BE · CF = DB · EC · FA. (cf. Fig. 7b)

Just as Ceva’s Theorem is an if and only if statement, the converse of Menelaus’ Theorem is also true.
Use mass point geometry to prove this. Then prove Menelaus’ Theorem is true using similar triangles.

6. Examples of Contest Problems

6.1. Math contests versus research Mathematics. You may still be thinking that the type of problem
that yields to a mass point solution is rare, and that it is more like a parlor trick than an important
mathematical technique. In this collection of problems that I have assembled, you will see problems that
can often be solved by mass point geometry more readily than with the official solution. They come from
a wide variety of contests and were often problems the contestants found difficult. Part of the fun of such
contests is knowing that a solution which could take you between 5 and 15 minutes exists and trying to find
it.

6.2. The contests surveyed for this collection. The problems in this section are from are city-wide,
regional and national contests(cf. [1, 2, 14, 18]): the New York City Mathematics League (NYCML), the
American Regional Mathematics League (ARML), the American High School Mathematics Examination
(AHSME), and the American Invitational Mathematics Examination (AIME).
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6.3. Using the fundamental mass point technique.

Contest Problem 1 (AHSME 1965 #37). Point E is selected on side AB of △ABC in such a way that
AE : EB = 1 : 3 and point D is selected on side BC so that CD : DB = 1 : 2. The point of intersection of
AD and CE is F . Find EF

FC
+ AF

FD
.

Contest Problem 2 (NYCML S75 #27). In △ABC, C′ is on side AB such that AC′ : C′B = 1 : 2,
and B′ is on AC such that AB′ : B′C = 3 : 4. If BB′ and CC′ intersect at P , and if A′ is the intersection
of ray AP and BC then find AP : PA′.

6.4. Using the angle bisector theorem and the transversal method.

Contest Problem 3 (ARML 1989 T4). In △ABC, angle bisectors AD and BE intersect at P . If the
sides of the triangle are a = 3, b = 5, c = 7, with BP = x, and PE = y, compute the ratio x : y, where x
and y are relatively prime integers.

Contest Problem 4 (AHSME 1975 #28). In △ABC, M is the midpoint of side BC, AB = 12 and
AC = 16. Points E and F are taken on AC and AB, respectively, and lines EF and AM intersect at G. If
AE = 2AF then find EG/GF .

Contest Problem 5 (ARML 1992 I8). In △ABC, points D and E are on AB and AC, respectively.
The angle bisector of ∠A intersects DE at F and BC at T . If AD = 1, DB = 3, AE = 2, and EC = 4,
compute the ratio AF : AT .

6.5. Using ratios of areas via PST 1.

Contest Problem 6 (AHSME 1980 #21). In △ABC, ∠CBA = 72◦, E is the midpoint of side AC and
D is a point on side BC such that 2BD = DC; AD and BE intersect at F . Find the ratio of the area of
△BDF to the area of quadrilateral FDCE.

Contest Problem 7 (AIME 1985 #6). In △ABC, cevians AD, BE and CF intersect at point P . The
areas of △’s PAF, PFB, PBD and PCE are 40, 30, 35 and 84, respectively. Find the area of triangle ABC.

6.6. Change your point of view.

Contest Problem 8 (NYCML F76 #13). In △ABC, D is on AB such that AD : DB = 3 : 2 and E is
on BC such that BE : EC = 3 : 2. If ray DE and ray AC intersect at F , then find DE : EF .

Contest Problem 9 (NYCML S77 #1). In a triangle, segments are drawn from one vertex to the
trisection points of the opposite side. A median drawn from a second vertex is divided, by these segments,
in the continued ratio x : y : z. If x ≥ y ≥ z then find x : y : z.

6.7. Using special triangles and topics from geometry.

Contest Problem 10 (NYCML S78 #25). In △ABC, ∠A = 45◦ and ∠C = 30◦. If altitude BH
intersects median AM at P , then AP : PM = 1 : k. Find k.

Contest Problem 11 (AHSME 1964 #35). The sides of a triangle are of lengths 13, 14, and 15. The
altitudes of the triangle meet at point H . If AD is the altitude to the side of length 14, what is the ratio
HD : HA?

6.8. Some especially challenging problems.

Contest Problem 12 (AIME 1992 #14). In △ABC, A′, B′, and C′ are on sides BC, AC, AB,
respectively. Given that AA′, BB′, and CC′ are concurrent at the point O, and that AO

OA′
+ BO

OB′
+ CO

OC′
= 92,

find the value of AO

OA′
· BO

OB′
· CO

OC′
.

Theorem 6. In △ABC, if cevians AD, BE, and CF are concurrent at P then

PD

AD
+

PE

BE
+

PF

CF
= 1.

Contest Problem 13 (AIME 1988 #12). Let P be an interior point of △ABC and extend lines from
the vertices through P to the opposite sides. Let AP = a, BP = b, CP = c and the extensions from P to
the opposite sides all have length d. If a + b + c = 43 and d = 3 then find abc.

Contest Problem 14 (AIME 1989 #15). Point P is inside △ABC. Line segments APD, BPE, and
CPF are drawn with D on BC, E on CA, and F on AB. Given that AP = 6, BP = 9, PD = 6, PE = 3,
and CF = 20, find the area of triangle ABC.
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Contest Problem 15 (Larson [9] problem 8.3.4). In △ABC, let D and E be the trisection points of
BC with D between B and E. Let F be the midpoint of AC, and let G be the midpoint of AB. Let H be
the intersection of EG and DF . Find the ratio EH : HG.

7. History and Sources

Mass points were first used by Augustus Ferdinand Möbius in 1827. They didn’t catch on right away.
Cauchy was quite critical of his methods and even Gauss in 1843 confessed that he found the new ideas of
Möbius difficult. I discovered this historical information recently in a little mathematical note by Dan Pedoe
in Mathematics Magazine [13]. This was long after I learned about the method.

I first encountered the idea about 30 years ago in a math workshop session entitled “Teeter-totter Geom-
etry” given by Brother Raphael from Saint Mary’s College of California in Moraga. Apparently he taught
one of the courses each year using only original sources, and that year he was reading Archimedes with his
students. It was Archimedes’ “principle of the lever” that he used on the day of my visit to show how mass
points could be used to make deductions about triangles.

For a very readable account of the assumptions Archimedes makes about balancing masses and locating
the center of gravity, I recommend the new book Archimedes: What Did He Do Besides Cry Eureka? [17]
written by Sherman Stein of U.C.Davis. About twenty-five years ago Bill Medigovich, who was then teaching
at Redwood High School in Marin County, California, sent me a 30-sheet packet [10] that he used for a
presentation he gave to high school students. I also found the topic discussed in the appendix of The
New York City Contest Problem Book 1975-1984 [15] with a further reference to an article The Center of
Mass and Affine Geometry [5] written by Melvin Hausner in 1962. Recently, Dover Publications reissued
a book published by Hausner [6] in 1965 that was written for a one year course for high school teachers of
mathematics at New York University.

As I was preparing for this talk in 2002, I was going through old issues of Eureka which are no longer
available and found a key paper on the this subject, Mass Points [16], that was originally written for the NYC
Senior ‘A’ Mathletes. The authors are Harry Sitomer and Steven R. Conrad. Their paper provided me with
what I considered to be the most attractive way to present these ideas. This wonderful journal for problem
solvers published by the Canadian Mathematical Society is presently published as Crux Mathematicorum
and Mathematical Mayhem. There are a few other articles that I used in preparing for the talk. They are
listed in the references as Boyd [3], Honsberger [7], and Pedoe(1970) [12].
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