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Which of the two numbers is greater,A or B? Explain your answer!

Solution. We will determine the sign ofA − B. If that number happens to be positive thanA > B, otherwiseA < B. For
eachn such that1 ≤ n ≤ 2005, let us define
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ThenA1 = A, B1 = B and we always have thatAi −Bi andAi+1 −Bi+1 have different signs. Indeed, sinceAi = i + 1
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we haveAi − Bi = Bi+1−Ai+1
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. Therefore ifAi − Bi > 0 thenBi+1 − Ai+1 > 0 and vice versa. Thus

A1 − B1, A3 − B3, . . . , A2005 − B2005 have the same signs. From
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we getA < B.

2. A group of mathematicians is lost in a forest. The forest has a shape of an infinite strip that is1 mile wide. Prove that they can
choose a path that will guarantee them a way out and that is at most2

√
2 miles long.

Remark. The mathematicians have no device for orientation and no maps. All they know is that the forest is a region between
two parallel lines1 mile appart from each other. They can’t see the end of the forest, unless they are at the edge. However, they
can precisely follow any path they design, e.g. they can movealong straight line, circle, etc.

Solution. Starting from their initial pointA, the mathematicians should first move
√

2 miles in any direction. If they didn’t
get to the exit, they have arrived at pointB. Then they should turn by90◦ and walk for another

√
2 miles to the pointC. We

claim that they did reach the exit. If not, then the triangleABC is entirely in the forest. The triangle is rectangular, isosceles
and its altitude is1 mile. Thus the triangle can’t be placed in the infinite strip of width 1 unless the vertices are on the edges.
Contradiction.

3. The numbers1, 8, 4, 0 are the first four terms of the infinite sequence. Every subsequent term of the sequence is obtained as
the last digit of the sum of previous four terms. Therefore the fifth term of the sequence is3, because1 + 8 + 4 + 0 = 13; the
sixth term is5 because8 + 4 + 0 + 3 = 5, and so on.

(a) Will 2, 0, 0, 7 ever appear as a subsequence?

(b) Will 1, 8, 4, 0 appear again as a subsequence?

Explain your answer!

Solution.

(a) Yes, very soon, in fact the next four terms (from7 to 10th) are2, 0, 0, 7.

(b) We will prove that1, 8, 4, 0 will be a subsequence again. Assume the contrary. Since there are only finitely many
combinations of four digits (precisely104), and the sequence is infinite, some combination of four digits (say(a, b, c, d))
has to reappear. Assume that(xn, xn+1, xn+2, xn+3) = (a, b, c, d) is the first occurence of(a, b, c, d) and that(xm,
xm+1, xm+2, xm+3) = (a, b, c, d) is the second. Clearlym > n. However,xn−1 andxm−1 are uniquely determined
and they have to be the same numbers. Thusxn−1 = xm−1, xn−2 = xm−2, and so on. This means thatx1 = xm−n+1,
x2 = xm−n+2, x3 = nm−n+3, andx4 = xm−n+4, which is a contradiction.
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4. LetX , Y , andZ be the points on the sidesBC, CA, andAB of the triangleABC, such that△XY Z ∼ △ABC (∢X = ∢A,
∢Y = ∢B). Prove that the orthocenter of△XY Z coincides with the circumcenter of△ABC.

Solution. Let x, y, andz be the points passing throughX , Y , andZ, parallel toY Z, ZX , andXY . Let P , Q, andR be the
intersection point of the linesy andz; z andx; x andy, respectively. Then we have△PQR ∼ △XY Z. The pointsX , Y , and
Z are respectively the midpoints ofRQ, QP , andPR. LetM be the orthocenter of△XY Z. Obviously,M is the circumcenter
of △PQR and∢ZMY = 180◦−∢X = 180◦−∢P = 180◦−∢A. Hence the pointsP , A, Z, M , andY belong to a circle. In
a similar way we prove that the pointsZ, B, R, X andM belong to a circle. Then∢PMA = ∢PZA = ∢BZR = ∢BMR.
SinceMR = MP and∢PAM = ∢BRM = 90◦, we conclude thatMA = MB. Analogously we conclude thatMA = MC

implying thatM is the circumcenter of△ABC.

5. Letn > 1 be an odd integer. Prove that every integerl satisfying1 ≤ l ≤ n can be represented as a sum or difference of two
integers each of which is less thann and relatively prime ton.

Solution. We will use the following lemma (it is known as The Chinese Remainder Theorem).

Lemma. Let m1, m2, . . . , mk be different relatively prime numbers. Ifq1, q2, . . . , qk are arbitrary non-negative integers then
there exists a natural numberx less thanm1m2 . . . mk such that

x ≡ q1 (modm1)

x ≡ q2 (modm2)

...

x ≡ qk (modmk).

Proof of the Lemma. We can assume thatqi < mi for 1 ≤ i ≤ k. We will prove this by induction. Fork = 2 we consider the
numbersx1 = q1, x2 = m1 + q1, x3 = 2m1 + q1, . . . , xm2

= (m2 − 1)m1 + q1. If two of the numberxi andxj give the
same remainder upon division bym2 we have thatxj − xi is divisible bym2 which is impossible since that difference is equal
to (j − i)m1. Thus allxis give different remainders modulom2 and one of them has to give a remainderq2. This finishes the
proof for the casek = 2.

Assume now that the statement holds fork and we want to prove it fork + 1. Applying the inductional hypothesisq1, . . . , qk

we find a numberx′ such thatx′ ≡ qi (modmi) for 1 ≤ i ≤ mi. Now by the casek = 2 we get that there is anx such that
x ≡ x′ (modm1 · · ·mk) andx ≡ qk+1 (modmk+1). Suchx satisfies the required condition.�

Let n = pα1

1 · · · pαk

k , wherep1, . . . , pk are prime numbers andα1, . . . αk positive integers. Assume thatl is given and that
l ≡ ti (modpi). Sincepi > 2 we can choosesi such thatsi 6≡ 0 (modpi) andsi 6≡ ti (modpi). By the Chinese Remainder
Theorem there exists an integers < p1 . . . pk such thats ≡ si (modpi) for everyi = 1, . . . , k. If s < l then choosea = s and
b = l − s. If s > l then we can choosea = s andb = s − s. It is easy to verify that sucha andb satisfy the conditions of the
problem.
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