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Which of the two numbers is greatet,or B? Explain your answer!

Solution. We will determine the sign oft — B. If that number happens to be positive than> B, otherwiseA < B. For
eachn such thatt < n < 2005, let us define
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ThenA; = A, By = B and we always have that; — B; andA;, — B;+1 have different signs. Indeed, sindg = i + Aj“

andB; =1 + B>;+1 we haved; — B; = iﬁ%ﬁil. Therefore ifA; — B; > 0thenB;;1 — A;11 > 0 and vice versa. Thus

Ay — B1, A3 — Bs, ..., Asgos — Bagos have the same Signs. From

1
Az005 — B2oos = <2005 + 2005 + _> <0,

2006 + ﬁ) - ( 2006
we getd < B.

2. A group of mathematicians is lost in a forest. The forestdnahape of an infinite strip thatisnile wide. Prove that they can
choose a path that will guarantee them a way out and that i®st21y2 miles long.

Remark. The mathematicians have no device for orientation and nsmapthey know is that the forest is a region between
two parallel linesl mile appart from each other. They can't see the end of thesfauneless they are at the edge. However, they
can precisely follow any path they design, e.g. they can natmeg straight line, circle, etc.

Solution. Starting from their initial pointd, the mathematicians should first moy& miles in any direction. If they didn't
get to the exit, they have arrived at poiit Then they should turn b§0° and walk for anothet/2 miles to the poinC. We
claim that they did reach the exit. If not, then the triangIBC is entirely in the forest. The triangle is rectangular, tsdes
and its altitude id mile. Thus the triangle can’t be placed in the infinite stripwidth 1 unless the vertices are on the edges.
Contradiction.

3. The numberg, 8, 4,0 are the first four terms of the infinite sequence. Every sulbseiterm of the sequence is obtained as
the last digit of the sum of previous four terms. Therefoeeftfth term of the sequence s becausé + 8 + 4 + 0 = 13; the
sixth term is5 becaus® +4 + 0+ 3 = 5, and so on.

(&) Will 2,0,0,7 ever appear as a subsequence?
(b) Will 1,8,4,0 appear again as a subsequence?

Explain your answer!
Solution.

(&) Yes, very soon, in fact the next four terms (fr@rto 10th) are2, 0,0, 7.

(b) We will prove thatl, 8,4,0 will be a subsequence again. Assume the contrary. Since #reronly finitely many
combinations of four digits (precisely)*), and the sequence is infinite, some combination of foutsligay(a, b, c, d))
has to reappear. Assume that,, z,,+1, Tnt2, Tnts) = (a,b,c,d) is the first occurence ofa, b, ¢, d) and that(z,,,
Tm+1s Tm+2, Tm+3) = (a,b, ¢, d) is the second. Clearly: > n. However,z,_; andz,,_; are uniquely determined
and they have to be the same numbers. Thus = z,,-1, Tn_2 = Z;,—2, and so on. This means that = x,;,_n+1,
T3 = Tm—n+t2, T3 = Nym—n+3, aNAT4 = T, —pt4, Which is a contradiction.



4. LetX,Y,andZ be the points on the sidd3C, C A, andAB of the triangleABC, suchthan XY Z ~ AABC (<X = <A,
<Y = «B). Prove that the orthocenter 6f XY Z coincides with the circumcenter 6 ABC'.

Solution. Letz, y, andz be the points passing through, Y, andZ, parallel toY Z, ZX, andXY. Let P, @, andR be the
intersection point of the linegandz; z andz; x andy, respectively. Then we have PQR ~ AXY Z. The pointsX, Y, and
Z are respectively the midpoints &0, Q P, andPR. Let M be the orthocenter ok XY Z. Obviously,M is the circumcenter
of APQRand<ZMY = 180° — <X = 180° — <P = 180° — <A. Hence the point®, A, Z, M, andY belong to a circle. In
a similar way we prove that the points B, R, X andM belong to a circle. Thea PM A = <PZA = <BZR = <BMR.
SinceM R = M P and<PAM = <BRM = 90°, we conclude tha¥/ A = M B. Analogously we concludethaf A = M C
implying that)/ is the circumcenter o ABC.

5. Letn > 1 be an odd integer. Prove that every integsatisfyingl < ! < n can be represented as a sum or difference of two
integers each of which is less tharand relatively prime tau.
Solution. We will use the following lemma (it is known as The Chinese Rarder Theorem).

Lemma. Let my, mao, ..., my be different relatively prime numbers. ¢f, g2, . . . , gx are arbitrary non-negative integers then
there exists a natural numbetess thann;ms ... m; such that

= 1 (mOdml)
= g2 (Modmy)

x = ¢ (modmy).

Proof of the Lemma. We can assume that < m; for 1 < i < k. We will prove this by induction. Fok = 2 we consider the
numberse; = ¢1, x2 = mi1 +q1, T3 = 2m1 + qu, ..., Tm, = (M2 — 1)m1 + ¢1. If two of the number:; andz; give the
same remainder upon division by, we have that:; — x; is divisible bym, which is impossible since that difference is equal
to (j — ¢)m;. Thus allz;s give different remainders module; and one of them has to give a remaingerThis finishes the
proof for the casé = 2.

Assume now that the statement holds £aand we want to prove it fok + 1. Applying the inductional hypothesis, . . ., g
we find a number’ such that’ = ¢; (modm;) for 1 < i < m;. Now by the cas& = 2 we get that there is an such that
x =2’ (modmy ---my) andz = gx4+1 (Modmy1). Suchz satisfies the required conditionl

Letn = pi" ---pp*, wherep,,...,p, are prime numbers ang, ... oy, positive integers. Assume thais given and that
I =t; (modp;). Sincep; > 2 we can choose; such thats; Z 0 (modp;) ands; # t; (modp;). By the Chinese Remainder
Theorem there exists an integex p; ... p; such that = s; (modp;) foreveryi = 1,..., k. If s < [then choose = s and
b=1—s.If s >1thenwe can choose= s andb = s — s. Itis easy to verify that suchh andb satisfy the conditions of the
problem.



