Berkeley Math Circle Monthly Contest 3 – Solutions

1. Is the number $\left|2^{3000} - 3^{2006}\right|$ bigger or smaller than $\frac{1}{2}$?

Solution. Notice that $|2^{3000} - 3^{2006}|$ is a non-negative integer, so it is either 0 or bigger than 1/2. However, this number is not 0 since $2^{3000} \neq 3^{2006}$, hence $|2^{3000} - 3^{2006}| > \frac{1}{2}$.

2. If a, b, c, d are positive real numbers such that $\frac{5a+b}{5c+d} = \frac{6a+b}{6c+d}$ and $\frac{7a+b}{7c+d} = 9$, calculate $\frac{9a+b}{9c+d}$.

Solution. Let $\frac{5a+b}{5c+d} = \frac{6a+b}{6c+d} = k$. Then 5a+b = k(5c+d) and 6a+b = k(6c+d). Subtracting these two equations gives a = kc. Now we can easily get that b = kd. From $\frac{7a+b}{7c+d} = \frac{7kc+kd}{7c+d} = k = 9$ we get $\frac{9a+b}{9c+d} = 9$ as well.

3. Let n > 3 be an integer which is not divisible by 3. Two players A and B play the following game with n × n chocolate table. First, player A has to chose and remove one piece of the chocolate, without breaking other pieces. After his move, player B tries to partition the remaining chocolate into 3 × 1 (and 1 × 3) rectangles. If B manages to do so, then he/she is the winner. Otherwise the winner is A. Determine which player has a winning strategy and describe the strategy.

Solution. The player A has a winning strategy. Imagine that the chocolate is painted in 3 colors, R(ed), G(reen), and B(lue) as shown in the table

R	G	B	R	G	B	R	
B	R	G	B	R	G	B	• • •
G	B	R	G	B	R	G	• • •
R	G	B	R	G	B	R	• • •
B	R	G	B	R	G	B	• • •
G	B	R	G	B	R	G	• • •
R	G	B	R	G	B	R	• • •
	:			:			÷
							:

Notice that every 1×3 rectangle will contain exactly one red, one green, and one blue piece. Moreover the orignal table had equal number of green and blue pieces, and one red piece extra. If A takes out any green or blue piece, player B won't be able to fulfil the requirement, and A is the winner.

4. Given a triangle ABC, let D be the point of the ray BA such that BD = BA + AC. If K and M are points on the sides BA and BC, respectively, such that the triangles BDM and BCK have the same areas, prove that $\angle BKM = \frac{1}{2} \angle BAC$.

Solution. Since the area of the triangle BDM is equal to $BD \cdot BM \cdot \sin \angle DBM$ and similar formula holds for the area of $\triangle BCK$ we immediately have that $BD \cdot BM = BC \cdot BK$. This implies that $\frac{BD}{BK} = \frac{BC}{BM}$ hence KM || CD. Thus $\angle BKM = \angle BDC = \angle ADC$. The last angle is equal to $\frac{1}{2}\angle BAC$ since $\triangle DAC$ is isosceles.

5. Determine the greatest real number a such that the inequality

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \ge a(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5)$$

holds for every five real numbers x_1, x_2, x_3, x_4, x_5 .

Solution. Note that

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = \left(x_1^2 + \frac{x_2^2}{3}\right) + \left(\frac{2x_2^2}{3} + \frac{x_3^2}{2}\right) + \left(\frac{x_3^2}{2} + \frac{2x_4^2}{3}\right) + \left(\frac{x_4^2}{3} + x_5^2\right).$$

Now applying the inequality $a^2 + b^2 \ge 2ab$ we get

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \ge \frac{2}{\sqrt{3}}(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5).$$

This proves that $a \ge \frac{2}{\sqrt{3}}$. In order to prove $a \le \frac{2}{\sqrt{3}}$ it is enough to notice that for $(x_1, x_2, x_3, x_4, x_5) = (1, \sqrt{3}, 2, \sqrt{3}, 1)$ we have

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = \frac{2}{\sqrt{3}}(x_1x_2 + x_2x_3 + x_3x_4 + x_4x_5).$$