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Solutions

1. Find all integer solutions to xy = 2003(x + y)

We get
20032 − 2003x− 2003y − xy = 20032

(2003− x)(2003− y) = 20032

So (2003− x) is a divisor of 20032. As 2003 is a prime number, we conclude
that 2003 − x is −20032,−2003,−1, 1, 2003, or 20032, and x. Then for x, y we
obtain

x = 20032 + 2003 = 4014012, y = 2004,
x = 2003 + 2003 = 4006, y = 4006,
x = 1 + 2003 = 2004, y = 4014012,
x = −1 + 2003 = 2002, y = −401006,
x = −2003 + 2003 = 0, y = 0,
x = −20032 + 2002 = −401006, y = 2002.

2. Show that for each n ≥ 17 one can cut a square into n smaller squares.

One can cut a square into n smaller squares for all n ≥ 6. Here is how.

For n = 4

For n = 6

For n = 8

1



Suppose we know how to cut a square into n smaller squares. If we take one
of the square “pieces” and cut it onto four smaller squares (as in the picture
above for n = 4. Now we have cut our original square into n+3 pieces. Since we
know how to cut a square into 4 pieces, we can cut it into 7, 10, . . . , 3k + 1, . . .
pieces. Similarly, starting with 6 pieces we can get 6, 9, . . . , 3k, . . . pieces, and
from 8 pieces - 8, 11, . . . , 3k + 2, . . . pieces. Hence we can get any number of
pieces bigger or equal to 6.

3. In each cell of n × n table there is an arrow pointing in one of eight
principal directions (i.e. one of the following: →,←, ↑, ↓,↗,↘,↖,↙), in such
a way that the arrows in any two adjacent cells form an angle of no more than
45 degrees, and the arrows in any two cells adjacent diagonally (i.e. sharing a
vertex) form an angle of no more than 90 degrees. We start at some cell and
follow the arrows (e.g. if the arrow in our cell is ↑ we move up by one, if it is ↘
we move diagonally down and to the right, etc.). Prove that we will eventually
escape from the table (i.e. will reach a cell on the boundary of the table where
the arrow will point ”out of the table”).

Suppose that there exists such a table of arrows and a cell in it so that we
can follow the arrows without ever escaping the table. Then, since the number
of cells in the table is finite, we must at some point return to a cell we have
already visited, and then continue in a loop. Let’s rotate all the arrows in our
original n×n table by 45 degrees, so that the arrows in the cells along our loop
point into the loop after the rotation. Note that because the adjacent arrows
of the loop are at no more than 90 degrees, the rotated arrows will indeed point
to the cells inside of the loop. The new table of (rotated) arrows still has the
property that any two adjacent cells form an angle of no more than 45 degrees,
and the arrows in any two cells adjacent diagonally form an angle of no more
than 90 degrees. If we now start at some point on the loop and follow the
(rotated) arrows, then since all the arrows on the boundary of the loop point
inward, we will never escape from inside of the loop, and so there is going to
be a yet smaller loop inside of our first loop. We can now repeat the process,
obtaining smaller and smaller loops along the way. But the number of cells
inside the loop (counting those on the loop itself) is an integer, and so it can
not decrease indefinitely. This contradiction shows that one will always escape
from the table.

4. Let R+ be the set of all positive real numbers. Find all functions f :
R+ → R+ such that

f(x)f(yf(x)) = f(x + y)

for all x, y ∈ R+.

If f(x) > 1 for some x, then for y = x
f(x)−1 we get

f(x)f(
f(x)x

f(x)− 1
) = f(x)f(yf(x)) = f(x + y) = f(x +

x

f(x)− 1
) = f(

f(x)x
f(x)− 1

),
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which leads to f(x) = 1, a contradiction. Hence f(x) ≤ 1 for all x. From
this we get f(x + y) = f(x)f(yf(x)) ≤ f(x) for all x, y, so f is non-increasing.

Suppose there exists an x0 with f(x0) = 1. Then f(x0 + y) = f(y) for all y,
and then f(kx0 + y) = f(y) by induction on k. Also, by monotonicity f(x) = 1
for all x ≤ x0, and since any y can be written as kx0 + y0 with y0 ≤ x0, we
conclude f(y) = f(y0) = 1 for all y.

If there is no x with f(x) = 1. Then f is monotone decreasing. Now

f(x)f(yf(x)) = f(x + y) = f(yf(x) + x + (1− f(x))y)
= f(y(f(x)))f((x + (1− f(x))y)f(y(f(x))),

so f(x) = f((x + (1 − f(x))y)f(y(f(x)). As f is monotone decreasing, this
implies x = x + (1 − f(x))y)f(y(fx). Setting x = 1, z = xf(1) and a = f(1)
we get f(z) = 1

1+az . Combining this with the case f(z) = 1, we conclude that
f(x) = 1

1+ax for each x with a ≥ 0. Conversely, a direct verification shows that
the functions of this form satisfy the initial equality.

5. A circle is tangent to the continuations of sides CA and CB of the triangle
ABC, and is also tangent to the side AB at point P . Prove that the radius
of the circle tangent to AP , CP and the circle circumscribed around ABC is
equal to the radius of the circle inscribed in ABC.

Let K and M be the tangency points of the circle with AP and CP respec-
tively, L - the point where it touches the circumscribed circle of ABC, T - the
middle of the arc AB of the circumscribed circle, I - the center of the inscribed
circle of ABC.

The tangent to the circle ABC at T is parallel to the line AB. So the
similarity transformation (“stretching”) centered at K taking the circle ABC
to the circle KLM takes AB to this tangent, and hence T to L. So K, L and
T are collinear. We now prove that points K,M and I are collinear. Let M ′ be
the point of intersection of the line KI with the circle KLM . We want to show
M = M ′.

First, let’s note that the quadrilateral LCIM ′ can be inscribed into a circle.
In fact, 6 LCT is equal is equal to the half-sum of the arcs LA and AT , which is
equal to 1

2 (L̆A + ˘TB) = 6 LKA. But LKA is the angle formed by the tangent
AK and the chord LK of the circle LKM , and is therefore equal to LM ′K,
subtended by this chord. Hence 6 LCT = 6 LM ′K and the quadrilateral LCMI
can be inscribed in a circle. Therefore 6 LM ′C = 6 LIC.

Further, 6 AKT = 1
2 (ĂT + B̆L) = 1

2 ( ˇTB + B̌L) = 6 LAT . Hence the
triangles TAK and TLA are similar, and so TK · TL = TA2. Also 6 AIT =
6 CAI + 6 ACI = 6 CAI + 6 TAB = 6 BAI + 6 TAB = 6 TAI. Therefore
TAI is an equilateral triangle, and so TI2 = TA2 = TK · TL, which implies
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that the triangles TKI and TIL are similar, and so 6 LIC = 6 LKI. Hence
6 LM ′C = 6 LIC = 6 LKM ′, so the angle subtended by the chord LM ′ is equal
to the angle between this chord and M ′C, so M ′C is a tangent, and so M ′ = M .

It is time to use the definition of the point P . Draw a tangent to the
inscribed circle of ABC parallel to AB. Let it be tangent to this circle at point
F . The circle tangent to the continuations of AC, BC and to AB at P can
be obtained from the inscribed circle of ABC by a similarity transformation
centered at C. This transformation would take F to P . Hence C, F and P
are collinear. Let V be the midpoint of PE, where E is the tangency point of
AB with the inscribed circle of ABC. As IV ‖ FP (IV connects the midpoints
of the sides of FEP ), KIV is similar to KMP , and so V I = V K. Hence
IE2 = V I2 − V E2 = V K2 − V E2 = (V K + V E)(V K − V E) = EK · PK.

Now let D be the center of the circle KLM . As 6 KDP = 6 IKE, the
triangles KDP and EKI are similar. Hence DK · IE = EK · PK, and so
IE2 = EK · PK = DK · IE, and so IE = DK, as wanted.
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