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Solutions

1. Solve

2

√

1 + x

√

1 + (x + 1)

√

1 + (x + 2)
√

1 + (x + 3)(x + 5) = x

As the left hand side is nonnegative, we see that any solution will have x ≥ 0.
For such x we have

√

1 + (x + 3)(x + 5) =
√

x2 + 8x + 16 =
√

(x + 4)2 = |x +
4| = x + 4. Proceeding similarly we get
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1 + (x + 1)

√
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1 + (x + 3)(x + 5)

= 2

√

1 + x

√

1 + (x + 1)
√

1 + (x + 2)(x + 4)

= 2

√

1 + x
√

1 + (x + 1)(x + 3) = 2
√

1 + x(x + 2) = 2(x + 1)

Solving 2(x + 1) = x gives x = −2, which is negative. Therefore the equation
has no solutions.

2. The circle ω passes through the vertices A and B of a unit square ABCD.
It intersects AD and AC at K and M respectively. Find the length of the
projection of KM onto AC.

Let T be the point of intersection of ω with BC. Then, as ∠ABT a right
angle, AT is a diameter, and ∠AMT is also a right angle. Therefore the pro-
jections of KM and KT on AC coincide. But the length of the projection of

KT is
√

2

2
because the length of KT is one, and the angle between KT and AC

is 45.
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3. A king is placed in the left bottom corner of the 6 by 6 chessboard.
At each step it can either move one square up, or one square to the right, or
diagonally - one up and one to the right. How many ways are there for the king
to reach the top right corner of the board?

We shall make a 6×6 table. In each cell of the table we will write a number
of ways in which the king can reach that cell. We will fill it out gradually -
starting with a row of ones at the bottom and a column of ones at the left. To
fill out the rest we use the following rule: the number in each cell is equal to
the sum of the numbers immediately below, to the left, and diagonally (to the
left and below). The result is:

1 11 61 231 681 1683
1 9 41 129 321 681

1 7 25 63 129 231
1 5 13 25 41 61

1 3 5 7 9 11
1 1 1 1 1 1

The answer is 1683.

4. In the triangle ABC the angle B is not a right angle, and AB : BC = k.
Let M be the midpoint of AC. The lines symmetric to BM with respect to AB

and BC intersect AC at D and E. Find BD : BE.

As BC is the angle bisector in the triangle MBE, we have CE

BE
= CM

BM
(by a

well-known property of the angle bisector). Similarly, AD

BD
= AM

BM
. Draw a line

BM ′ symmetric to BM with respect to the angle bisector of ABC (point M ′

is on the line AC). BM ′ bisects the angle DBE. Using the same property of

the angle bisector, we get EM
′

BE
= DM

′

BD
. Subtracting from this CE

BE
= CM

BM
we

get CM
′

BE
= AM

′

BD
or BD

BE
= AM

′

CM ′
.

Now it remains only to find the ratio in which M ′ divides AC. To do
that, note that MBC and MBA have equal areas: 1

2
BM · BC · sin ∠MBC =

1

2
BM · BA · sin ∠MBA. Therefore sin ∠MBC

sin ∠MBA
= AB

BC
= k. Hence

AM ′

CM ′
=

SABM ′

SBCM ′

=
1

2
BM ′ ·BA · sin ∠M ′BA

1

2
BM ′ · BC · sin ∠M ′BC

= k · sin ∠M ′BA

sin ∠M ′BC
=

sin ∠MBC

sin ∠MBA
= k · k = k2

5. One marks 16 points on a circle. What is the maximum number of acute
triangles with vertices in these points?

Consider the set of all angles M1M2M3, where M1,M2 and M3 is an arbitrary
triple of selected points. There are 16·15·14

2
= 1680 different angles in this
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set. Suppose n of them are not acute. We shall prove n ≥ 392. For each
integer m between 1 and 7, take a chord with endpoints among the selected
points such that there are exactly m selected points to one side of the chord
(not including the endpoints). We will call such a chord an m-chord. Each
m-chord subtends not less than m nonacute angles with vertices among the
marked points. For each m ≤ 6 there are exactly 16 m-chords, and for m = 7
there are exactly 8 of them. So the total number of nonacute angles is at least
16(1 + 2 + . . . + 6) + 8 ∗ 7 = 392.

There are 16·15·14

6
= 560 triangles with vertices among the marked points.

Each nonacute angle will “spoil” exactly one triangle, so the number of acute
triangles is not greater than 560 − 392 = 168.

It is only left to construct an example with exactly 168 acute triangles. Mark
eight consecutive vertices of a right 16-gon V1, . . . V8. Draw a line through the
center of the 16-gon not parallel to V1V8, such that all V ’s lie on the same
side of that line (and not on the line). Reflecting the V ′s with respect to that
line we get points V1

′, . . .V8
′. We claim that the set V1, . . . V8, V1

′ . . . V8
′ is as

wanted. Indeed, there are no diametrically opposite points in this set (otherwise
we would get V1V1

′ = 0 or V8V8
′ = 0), and so for m = 7 each m-chord subtends

exactly 8 nonacute angles. Moreover, for each m ≤ 6 each m-chord subtends
exactly m nonacute angles, and so n = 392, and the number of acute triangles
is 168.
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