
Berkeley Monthly Contest #2 Solutions

1. (In these solutions, it will be assumed that nobody knows himself.)
Let there be n people present at the party. Then there are n different
numbers of people that anyone can know: 0, 1, 2, . . . , n − 1. CASE 1:
Suppose that for any a between 0 and n−1 someone at the party knows
a people. Then there will be someone who knows n − 1 people, and
someone who knows 0 people. However, the person that knows n − 1
people knows everyone at the party (by definition), and thus also knows
the person who knows 0 people. However, knowing is symmetric, thus
the person who knows 0 people must also know the person who knows
n− 1 people. This is a contradiction. This leads in to CASE 2: There
is some number a between 0 and n−1 for which nobody knows exactly
a people at the party. Thus there are at most n−1 different values of a
for which people know exactly a people. However, there are n people;
by the pigeonhole principle, that means that there is some b for which
two people know excatly b people.

2. Let a?b = ab+a+b. Notice that a?b = ab+a+b = (a+1)(b+1)−1. Since
a and b are symmetric in this expression, this operation is commutative.
Also, (a?b)?c = ((a+1)(b+1)−1+1)(c+1)−1 = (a+1)(b+1)(c+1)−1 =
(a + 1)((b + 1)(c + 1) + 1 − 1) − 1 = a ? (b ? c). Thus the operation
is associative. Since it is both associative and commutative it can
be done in any order and always achieve the same result. Thus the
order does not matter. LEMMA: The result after applying ? to the
set {a1, a2, . . . , an} gives (a1 + 1)(a2 + 1) · · · (an + 1) − 1. Proof: We
will prove this using induction. It is true for the n = 2 case, since
that is the definition of the operation. Suppose that it is true for the
n = k case. Then (a1 ? a2 ? · · · ? ak) ? ak+1 = ((a1 + 1)(a2 + 1) · · · (ak +
1) − 1) ? ak+1 = (((a1 + 1)(a2 + 1) · · · (ak + 1) − 1) + 1)(ak+1 + 1) −
1 = (a1 + 1)(a2 + 1) · · · (ak + 1)(ak+1 + 1) − 1 as was necessary to
be shown. Thus the result of applying ? to the set {1, 2, . . . , n} is
(1 + 1)(2 + 1) · · · (n + 1)− 1 = 1 ∗ 2 ∗ 3 ∗ · · · ∗ (n + 1)− 1 = (n + 1)!− 1.
Since k! is even for all k > 1, (n + 1)! is even for all n greater than 0,
and (n + 1)! − 1 is odd for all such n. Thus the result will always be
even if there is more than one number to start off with.

3. LEMMA: (AM-GM Note: This is well-known, it is not necessary to
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prove it on contests) a+b
2
≥
√

ab for a, b ≥ 0 Proof:

(a− b)2 ≥ 0 ⇒

a2 − 2ab + b2 ≥ 0 ⇒

a2 + 2ab + b2 ≥ 4ab ⇒

(a + b)2 ≥ 4ab ⇒
(a + b)2

4
≥ ab ⇒

Since both a and b are greater than zero, and thus both sides of the
expression are greater than zero, it is possible to square root both sides:

a + b

2
≥
√

ab.

Applying the lemma to a, b, c pairwise, we get

a + b

2
≥
√

ab

a + c

2
≥
√

ac

b + c

2
≥
√

bc

Multiplying these three expressions we get

a + b

2

a + c

2

b + c

2
≥
√

ab
√

ac
√

bc ⇒

(a + b)(b + c)(c + a)

8
≥
√

a2b2c2 ⇒

(a + b)(b + c)(c + a) ≥ 8abc.

4. LEMMA: In any4ABC with orthocenter H the circumradii of4ABC,
4ABH,4ACH and4BCH are equal.Proof: Let ω be the circumcircle
of4ABC, and A′ the intersection of ray AH with ω. Let H ′ be the base
of the perpendicular from A to BC. Then 6 A′BC = 6 A′AC (because
they are based on the same arc of the circle), and 6 HAC = 6 HBC
because they are both complementary to 6 ACB. And since A, H,A′
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are collinear, 6 A′AC = 6 HAC. Thus 6 A′BC = 6 HBC. Analo-
gously, 6 A′CB = 6 HCB. Thus, (since they share side BC) 4HBC ∼=
4A′BC. And thus their circumradii are equal. Since 4A′BC is in-
scribed in ω its circumradius is equal to that of 4ABC, and thus the
circumradius of 4HBC is equal to the circumradius 4ABC. The
other cases are done analogously.Since G is on the circle with diameter
AB 6 AGB = π

2
. Since it is on the circle with diameter AC 6 AGC = π

2
.

Because of this 6 BGC = 6 AGB + 6 AGC = π
2

+ π
2

= π. Thus G is
on segment BC and is the base of the altitude from A onto BC. This
makes D the ortocenter of ABC, and by the lemma the circumradii of
4ABD and 4ACD are equal. Solution 2 (submitted by Philip Sung):
Let the centers of the two circles be X and Y , the midpoints of AC and
AB, respectively. Since A and G are the two intersection points of the
circles, AG ⊥ XY . ALso, since XY bisects AG reflecting A over XY
takes it to G. Then G is on BC since XY is the midline of 4ABC.
Also, AG ⊥ BC since BC‖XY . Thus G is the foot of the altitude from
A, and D is the orthocenter of the triangle. Reflect C across AG to C ′.
Then 4DC ′A ∼= 4DCA, and their circumradii are equal. However, C ′

is on the circumcircle of 4ABD because 6 AC ′D = 6 ACD = 6 ABD.
Thus the circumradii of4ACD and4ABD are equal.It is also possible
to solve this using the law of sines.

5. a. There are no domino tiling configurations for a 3 × n rectangle for
n odd. In a 3 × n rectangle for n odd, there are an odd number of
squares. But clearly any region tiled by 2× 1 dominos must consist of
an even number of squares. Therefore there are no tilings for a 3 × n
rectangle, n odd.b. There are three 3 × 2 rectangles. The domino
covering the upper left square can be either vertical or horizontal. If it
is vertical, this forces the domino in the upper right corner to be verical
as well, fixing the position (horizontal, bottom) of the third domino.
If it is horizontal the two remaining dominos may fill the 2× 2 square
below either horizontally or vertically. This gives rise to three domino
configurations as desired.c. There are two 3× n rectangles, for n even,
that cannot be split into smaller 3 × n rectangles. For each k < n we
can imagine a vertical line seperating the rectangle in a 3 × k portion
and a 3 × (n − k) portion. There must be a domino spanning this
boundry for each k line or else we would be able to split the rectangle
into two smaller ones (condtradiction hypothesis). For a domino to
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span a vertical line it must be horizontal. As the rectangle has a height
of 3 there can be only 1, 2, or 3 spanning this line. If there are 1 or
3 rectangles spanning the line then on either side we will have some
number of whole dominos, each covering an even number of squares
an an odd number of ”half” dominos covering one square on each side
of the line. This gives an odd number of squares on each side of the
line. Similarly with 2 rectangles spanning the line we have an even
number of squares on either side of the line. Thus if k is even we must
have 2 dominos spanning our line and if k is odd 1 or 3. But notice
that if at each even junction we have exactly 2 dominos spanning the
boundry, it must the same two rows at each junction, and the third
row must have its boundary along this line. Our only choice left then
is which of the three rows has its boundry at the even intervals. Notice
that if it is the middle row, then when we reach either end we are left
with 4 fragmented squares at the corners; thus this configuration is
impossible. This leaves us with two possible configurations. Finally
we notice these possibilites yeild actual configurations. The 4 leftover
squares here, form two contiguous chuncks in which we can place a
domino. Therefore: for n even, there are two 3xn retangles that cannot
be split into smaller 3 × n rectangles.d. We can form a recurssion for
the total number of 3× 2n rectangles (an) by noticing that each legal
rectangle consists of some indivisible 3 × 2k rectangle at the leftmost
end and then a 3 × 2(n − k) rectangle for the rest of it. As there
are two such 3× 2k rectangles (3 if k = 1) we get the recursion. An =
3∗An−1+2∗(An−2+. . .+A0), letting A0 = 1. If we comibine the recusion
for an and an−1 (an−1 = 3∗an−2+ . . .) we get an = 4an−1−an− 2.e.
Now, to construct the closed form for the formula we can assume that it
is a geometric series. That gives us the equation r2 = 4r− 1 (if r is the
ratio between succesive terms). SOlving this, we get that r = 2±

√
3.

Then an = X(2 + sqrt3)n + Y (2 − sqrt3)n. Since a0 = 1 and a1 = 3
by solving the equation we get that X = 3+sqrt3

6
, Y = 3−sqrt3

6
, so the

closed form for the equation is

an =
3 + sqrt3

6
(2 + sqrt3)n +

3− sqrt3

6
(2− sqrt3)n.

4


