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Monthly Contest #7 — Solutions

1. Show that there exist infinitely many natural numbers n with the following property: the sum of all
the positive divisors of n, excluding n itself, equals n + 12.

Solution: Let p be any prime number greater than 3; we show that n = 6p has the desired property.
The positive divisors of 6p = 2 · 3 · p are 1, 2, 3, p, 2 · 3, 2 · p, 3 · p, and 2 · 3 · p. The sum of all the factors
other than 6p is equal to 6p + 12, as needed.

It is well known that there are infinitely many prime numbers. Since each value of p gives a different
value for n = 6p, we obtain infinitely many values for n.

2. 5 married couples gather at a party. As they come in and greet each other, various people exchange
handshakes — but, of course, people never shake hands with themselves or with their own respective
spouses. At the end of the party, one woman goes around asking people how many hands they shook,
and she gets nine different answers. How many hands did she herself shake?

Solution: Suppose that there were n couples, and the woman asked all 2n− 1 other attendees how
many hands they shook and received 2n − 1 different answers. We will show that she herself shook
n− 1 hands; hence, in our particular case, the answer is 4.

We work by induction. When n = 1, there is one couple, and no handshakes can occur, proving the
base case. Now suppose the result holds for n couples; we will prove it is valid for n + 1 couples. With
n + 1 couples present, the woman receives 2n + 1 different answers to her question. But no person
P can shake more than 2n hands (for 2n + 2 people, minus P and P ’s spouse); hence, these 2n + 1
numbers must be exactly 0, 1, 2, . . . , 2n in some order. In particular, one of these people, A, shook
everyone else’s hand except A’s own spouse (that accounts for the “2n” answer), and another, B, shook
no hands (the “0” answer). Because B did not shake A’s hand, A and B must be married to each
other. The remaining 2n people include the woman who asked the question, together with those who
answered 1, 2, . . . , 2n − 1 to her question. Now pretend that A and B had not attended the party,
so we are left with n couples. Each of these people shook hands with A and not with B; therefore,
when A and B are removed, their handshake counts become 0, 1, 2, . . . , 2n−2. Hence, by the induction
hypothesis, the questioner shook n− 1 hands. But now, if we put A and B back in, we note that the
woman shook A’s hand as well (and not B’s). So, altogether, she shook n hands. This completes the
induction step, and now the proof is done.

3. Let ABCD be a square and E a point on side CD. The circle inscribed in triangle ADE touches
DE at F , and the circle inside quadrilateral ABCE, tangent to sides AB,BC, EA, touches AB at G.
Prove that lines AE,BD, and FG meet in a point.

Solution: Extend lines BC and AE to intersect at H. Then the circle inside quadrilateral ABCE,
tangent to AB,BC, and EA, is really the inscribed circle of 4HBA. (Actually, this is only true if
the circle lies inside 4HBA rather than outside it. However, the fact that CE is parallel to AB with
CE < CD = AB readily implies that E lies between H and A, and C lies between H and B, so that
the whole quadrilateral ABCE lies within 4HBA, so the circle drawn inside it does too.) Now let P
be the intersection point of lines BD and AE. Consider the homothety (scaling) about P that sends
point D to point B. Since homotheties preserve directions of lines, this map takes line AD to the line
through B and parallel to AD, namely line HB. Similarly, it takes line DE to line BA. And line EA
passes through P , the center of the homothety, so it goes to itself.

Thus, our homothety takes lines AD,DE,EA to lines HB, BA, AH(= AE), respectively, so it takes
4ADE to 4HBA. Consequently, the incircle of 4ADE is mapped to the incircle of 4HBA, and the
map also matches corresponding tangency points: F goes to G. But if a homothety about P takes F
to G, then P, F,G must be collinear. We now know that P lies on lines AE,BD, and FG, which is
what we need.
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4. There are 3, 999, 999 cities in Antarctica, and some pairs of them are connected by roads. It is known
that, given any two cities, there is a sequence of roads leading from one to the other. Prove that the
cities can be divided into 1999 groups (of 2001 cities each) such that, given any two cities in the same
group, it is possible to get from one to the other using at most 4000 roads.

Solution: First, we provide some relevant graph-theoretic background. Any finite, connected graph
can be turned into a tree (a connected graph without cycles) by removing some edges. Proof: If our
graph has a cycle, any edge of that cycle can be removed without disconnecting the graph. So remove
this edge, leaving a new graph. If it has a cycle, we can again remove an edge; continuing in this
manner, we must eventually stop, since there are only finitely many edges to remove. We then have a
graph with no cycles; since no edge removal ever disconnected the graph, it must still be connected.

Also, given a tree, we can choose a root vertex r. Then, for any vertex v, there is a unique path from v
to r, never repeating a vertex (uniqueness follows from the absence of cycles). We call v a descendant
of w if this path goes through w. Every vertex is considered to be a descendant of itself and of r.
Suppose v is a descendant of w; then the path from v to r consists of the path from v to w followed
by the path from w to r. It follows that descent is transitive: if w in turn is a descendant of u, then v
is a descendant of u. It also follows that d(v, r) = d(v, w) + d(w, r), where d(x, y) denotes the distance
(i.e. number of edges in the path) from x to y. Finally, a vertex v with no descendants can be removed
and the graph will remain connected. Proof: every other vertex is connected to r by a path that does
not pass through v, so these vertices will remain connected to r — and hence to each other — when v
is removed.

Now we can solve our original problem. We state the graph-theoretic translation: given a connected
graph G on kn vertices (k ≥ 0, n ≥ 1), these vertices can be partitioned into k sets of size n such that
d(v, w) ≤ 2n − 2 whenever v, w are in the same set. (In our case, k = 1999, n = 2001.) We prove
this by induction on k. If k = 0, we form no vertex sets, and the statement is vacuously true. Now
suppose the statement holds for k − 1, where k ≥ 1, and we have a graph G on kn vertices. It suffices
to prove the result when G is a tree, since otherwise we can make it a tree by removing some edges
and partition the vertices of this tree appropriately. The same partition will then work for the original
graph G, since the distance between two vertices cannot increase when we put the deleted edges back.

So suppose G is a tree, and arbitrarily choose a root r. Now let a be a vertex for which d(a, r) is
maximal. Let a = v1, v2, . . . , vq = r be the path from a to r, and choose the smallest i such that
vi has at least n descendants. (Some such i surely exists, since r has kn descendants.) Let S be
the set of descendants of vi; note that if v ∈ S, then every descendant of v is in S, by transitivity.
Notice that v1, v2, . . . , vi−1 are all descendants of vi−1, so the minimality of i implies i− 1 < n. Thus,
d(a, vi) = i− 1 ≤ n− 1. Now we claim the distance between any two elements of S is at most 2n− 2.
Indeed, suppose b, c ∈ S. We have d(b, vi) = d(b, r) − d(vi, r) ≤ d(a, r) − d(vi, r) (by choice of a)
= d(a, vi) ≤ n− 1. Similarly, d(c, vi) ≤ n− 1, and so d(b, c) ≤ d(b, vi) + d(vi, c) ≤ 2(n− 1), as claimed.

Now let a1 be an element of S at maximal distance from r. (For example, take a1 = a.) Then
a1 can have no descendants (except itself) in G, since if b were a descendant of a1, we would have
d(b, r) = d(a1, b)+d(a1, r), contradicting maximality. Thus, we can remove a1 from G to leave a graph
G1, which is still connected — in fact, still a tree with root r. Now a similar argument shows that,
if a2 ∈ S ∩ G1 is chosen to have maximal distance from r, then a2 can have no descendants in G1:
any descendant would lie in S, by transitivity, and it would also be farther from r than a2, violating
maximality. So, deleting a2 from G1 gives another rooted tree, G2. Then, we can choose a3 ∈ S ∩G2

to be maximally distant from r, and so forth. We continue removing vertices in this manner; since
S has at least n elements, we can remove n vertices. Thus, we choose distinct vertices a1, a2, . . . , an,
all of which lie in S; this means that any two of these vertices are at distance ≤ 2n − 2 from each
other, and the remaining graph, G− {a1, . . . , an}, is still a tree. Now using the induction hypothesis,
this remaining graph can be partitioned to form the remaining k − 1 sets of vertices, and the desired
partition of G is accomplished.

Remark: In fact, given an arbitrary connected graph with a vertex r selected, we can define v
to be a descendant of w whenever d(v, r) = d(v, w) + d(w, r), and the same solution works, without
having to assume the graph is a tree. However, the case of a tree helps to motivate the definition.
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5. Let a1, a2, a3, . . . be a sequence of positive integers with the following property: if S is any nonempty
set of positive integers, there exists s ∈ S with as ≤ gcd(S). Prove that n! is divisible by a1a2 · · · an

for every positive integer n.

Solution: Fix n. Arrange the integers a1, . . . , an in nonincreasing order, ai1 ≥ ai2 ≥ · · · ≥ ain .
We claim there exists a bijective function f : {1, 2, . . . , n} → {1, 2, . . . , n} such that aik

| f(k) for
each k = 1, 2, . . . , n. To demonstrate this, we construct f inductively. Suppose that f(k) has been
defined for all values of k less than some j, and we wish to define f(j). Let d be the greatest common
divisor of i1, i2, . . . , ij . By the hypothesis, there exists some i ∈ {i1, i2, . . . , ij} such that ai ≤ d; since
aij

= min{ai1 , ai2 , . . . , aij
}, we have aij

≤ ai ≤ d. Now, we know of j distinct multiples of d lying in
the set {1, 2, . . . , n} (namely, i1, i2, . . . , ij); this many multiples can only exist if jd ≤ n. Then, the
numbers aij , 2aij , . . . , jaij are also all in {1, 2, . . . , n}, since jaij ≤ jd ≤ n. At most j − 1 of these can
have been used up by the previously defined values f(1), f(2), . . . , f(j − 1), so some value is left over;
we define f(j) to be such a value. Then aij

| f(j), as required.

So we can recursively define f(1), f(2), . . . , f(n) by the above method, and our construction ensures
that f is injective. Since it maps the finite set {1, 2, . . . , n} to itself, it must actually be bijective. Since
aik

| f(k) for each k, we have

a1a2 · · · an = ai1ai2 · · · ain
| f(1)f(2) · · · f(n) = 1 · 2 · · ·n = n!.

Remark: In fact, n! is the smallest positive integer that necessarily satisfies this condition. Indeed,
if p is any prime, then we can define an to be the largest power of p dividing n, for each n, and this
produces a sequence meeting the condition of the problem statement. Then a1a2 · · · an is the highest
power of p dividing n!, so taking the least common multiple of these values over all choices of p gives
us n!.
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