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Monthly Contest #6 — Solutions

1. In triangle ABC, let D be the midpoint of side BC. Let E and F be the feet of the perpendiculars to
AD from B and C, respectively. Prove that BE = CF .

Solution: We have ∠DFC = π/2 = ∠DEB. Also, ∠CDF = ∠BDE since they are vertical angles.
(It seems possible that E and F could lie on the same side of D, so that ∠CDF and ∠BDE would be
supplementary rather than equal; however, if they were supplementary and unequal, then one of them,
say ∠BDE, would be > π/2, so the sum of the angles of 4BDE would be > π, a contradiction.)
These equal angles imply 4DFC ∼ 4DEB. But CD = BC/2 = BD, so in fact 4DFC ∼= 4DEB,
giving CF = BE.

Alternate Solution: (Thanks to Inna Zakharevich) Let H be the foot of the perpendicular from
A to BC. Then, using the bh/2 formula and the fact that D is the midpoint of BC, we get

AD ·BE

2
= Area(4ABD) =

BD ·AH

2
=

CD ·AH

2
= Area(4ACD) =

AD · CF

2
.

Multiplying by 2/AD now gives BE = CF .

2. Let ABC be an equilateral triangle, and let P be a point on minor arc BC of the circumcircle of ABC.
Prove that PA = PB + PC.

Solution: Extend line PC through C to point D such that CD = BP . Note that ∠ACD =
π−∠PCA = ∠ABP (since quadrilateral ABPC is cyclic), and AC = AB since 4ABC is equilateral.
Consequently, 4ACD ∼= 4ABP . In particular, we have ∠PDA = ∠CDA = ∠BPA = ∠BCA (again
by cyclicity) = π/3. But also ∠APD = ∠APC = ∠ABC (cyclicity) = π/3. We conclude that triangle
APD is equilateral. So, PA = PD = PC + CD = PC + BP .

Remark: This is a special case of Ptolemy’s Theorem: if RSTU is any convex cyclic quadrilateral,
then RS · TU + ST ·RU = RT · SU . The proof of the theorem is similar to the above.

3. Determine all triples (x, y, n) of integers such that x2 + 2y2 = 2n.

Solution: It is easy to check that (±2r, 0, 2r) and (0,±2r, 2r + 1) satisfy this equation for any
nonnegative integer r. We will show that these are all the solutions by an infinite descent method.

So suppose we have some solution (x0, y0, n0). If x0 is odd, then 2n0 is odd, which forces n0 = 0 and then
x2

0 + 2y2
0 = 1, so y0 = 0 (or else 2y2

0 > 1 already) and then x0 = ±1. On the other hand, if x0 is even,
we can let x0 = 2x′0 and then 4x′ 20 +2y2

0 = 2n0 ⇒ y2
0 +2x′ 20 = 2n0−1, so (x1, y1, n1) = (y0, x0/2, n0−1)

is another solution to our equation, where n0 has been replaced by n0 − 1. Now if x1 is even, we can
repeat this construction to get another new solution (x2, y2, n2) with n0 − 1 replaced by n0 − 2, and
so on. These integers n cannot go on decreasing forever, since there does not exist an integral solution
where n < 0. Thus, eventually our process terminates, which means we get to a solution (xk, yk, nk)
with xk odd. By the above, this is possible only if xk = ±1, yk = 0, nk = 0.

On the other hand, the above construction can be performed in reverse: we have xi = 2yi+1, yi =
xi+1, ni = ni+1 + 1 for each value of i ≥ 0. Now we claim that (xi, yi, ni) = (±2(k−i)/2, 0, k − i) when
k − i is even, and (0,±2(k−i−1)/2, k − i) when k − i is odd. The proof is by downward induction: the
base case i = k is certainly true; given that the statement holds for some i > 0, it is simple algebra
to check that it holds for i − 1 by applying our reverse construction. Thus, the claim is true for each
i ≥ 0. In particular, (x0, y0, n0) = (±2k/2, 0, k) or (0,±2(k−1)/2, k), which fits the form above. So,
every solution is of this form.

Remark: For those who like heavy machinery, this problem can also be solved quite rapidly by
using unique factorization in the ring Z[

√
−2], factoring x2 + 2y2 as (x +

√
−2y)(x−

√
−2y).
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4. Suppose that S is a set of 2001 positive integers, and n different subsets of S are chosen so that their
sums are pairwise relatively prime. Find the maximum possible value of n. (Here the “sum” of a finite
set of numbers means the sum of its elements; the empty set has sum 0.)

Solution: The answer is 22000 + 1. To see that we cannot do better than this, note that at least
half of the 22001 possible subsets of S have even sums. Indeed, if all elements of S are even, then all
subsets have even sums; on the other hand, if there exists some odd s ∈ S, we can divide the subsets
of S into pairs of the form {T, T ∪ {s}} for each subset T not containing s. Since the sum of T and
that of T ∪ {s} are of opposite parity, each pair contains exactly 1 subset with an even sum. So, in
this case, half the subsets of S have even sums. The upshot is that, in either case, there are at most
22000 subsets of S with odd sums. Since our chosen subsets can include at most one subset whose sum
is even (because no two sums can have a common factor of 2), we cannot choose more than 22000 + 1
subsets altogether.

Now, we must construct an example to show that we can have n = 22000+1. To do this, let k = (22000)!,
and let S = {k, 2k, 4k, 8k, . . . , 21999k, 1}. We consider the 22000 subsets containing the element 1, plus
the one subset {k}. It is evident that k, the sum of the last subset, is relatively prime to the sum of
any subset containing 1, since this latter sum is of the form ak + 1 for some a. So now we just need
to prove that any two distinct subsets containing 1 have relatively prime sums. Well, any such set
consists of several distinct powers of 2, multiplied by k, plus 1. The sum of these powers of 2 is some
number a, 0 ≤ a < 22000. Thus the subset’s sum is ak + 1. However, it follows from the uniqueness of
binary representation that, for each possible value of a, there is only one subset whose sum is ak + 1.
Consequently, if we choose another, different subset (also containing 1), its sum is bk + 1 for some
b, 0 ≤ b < 22000 with a 6= b. Now suppose ak + 1 and bk + 1 are not relatively prime; then they have
some common prime factor p. So p | ak + 1 and p | bk + 1, hence p | (ak + 1) − (bk + 1) = (a − b)k.
Then, p | a − b or p | k. But a − b is nonzero and has absolute value < 22000, so a − b is one of the
factors in the product 1 ·2 ·3 · · · 22000 = k, and we get a− b | k. Thus, we are guaranteed that p divides
k. But then p cannot divide ak + 1, so we have a contradiction. We conclude that our subset sums
are, in fact, pairwise relatively prime, completing the proof.

5. Let x1, x2, . . . , x1000, y1, y2, . . . , y1000 be 2000 different real numbers, and form the 1000× 1000 matrix
whose (i, j)-entry is xi + yj . If the product of the numbers in each row is 1, show that the product of
the numbers in each column is −1.

Solution: The given says that (xi +y1)(xi +y2) · · · (xi +y1000) = 1 for each i = 1, 2, . . . , 1000. So, if
we let P (x) be the polynomial (x+y1)(x+y2) · · · (x+y1000)−1, the numbers xi are all roots of P . These
numbers are all distinct, and there are 1000 of them. But P , being of degree 1000, can only have 1000
roots, so these are all the roots of P and the polynomial factors as P (x) = c(x−x1)(x−x2) · · · (x−x1000)
for some constant c. Since the leading coefficient of P is 1, we conclude that c = 1. Thus,

(x + y1)(x + y2) · · · (x + y1000)− 1 = (x− x1)(x− x2) · · · (x− x1000)

is a polynomial identity, valid for all x.

Now choose any j (1 ≤ j ≤ 1000); we wish to show that the product of the numbers in the jth column
of the matrix is −1. Letting x = −yj in the above equation, we get

(−yj + y1)(−yj + y2) · · · (−yj + y1000)− 1 = (−yj − x1)(−yj − x2) · · · (−yj − x1000)
= (−1)1000(x1 + yj)(x2 + yj) · · · (x1000 + yj).

However, the product on the left-hand side is 0, since the jth factor is −yj +yj = 0; also, (−1)1000 = 1.
Thus, we obtain −1 = (x1 + yj)(x2 + yj) · · · (x1000 + yj), which is what we wanted to prove.
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