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1 Euler’s Inequality

One of the oldest inequalities about triangles is that relating the radii of the circumcircle
and incircle. It was proved by Euler and is contained in the following theorems. Proofs are
given in Geometry Revisited by Coxeter and Greitzer. It is published by the Mathematical
Association of America and should be on the bookshelf of everyone interested in geometry.

Theorem 1 (Euler 1765) Let O and I be the circumcenter and incenter, respectively, of a
triangle with circumradius R and inradius r; let d be the distance OI. Then

d2 = R2 − 2Rr

Theorem 2 In a triangle with circumradius R and inradius r, R ≥ 2r.

Here are seven other interesting and useful facts about triangles. Let s denote the semiperime-
ter of triangle ABC, α, β, γ the angles, a, b, c the opposite sides, and K the area.

1. K = 1
2
ab sin γ = 1

2
ac sin β = 1

2
bc sin α.

2. K =
√

s(s− a)(s− b)(s− c). (Heron’s formula)

3. K = rs

4. 2R = a
sin α

= b
sin β

= c
sin γ

(Law of Sines).

5. K = abc
4R

.

6. 1 + cos α = (a+b+c)(−a+b+c)
2bc

1− cos α = (a−b+c)(a+b−c)
2bc

.

7. sin α
2

=
√

(s−b)(s−c)
bc

cos α
2

=
√

s(s−a)
bc

tan α
2

=
√

(s−b)(s−c)
s(s−a)

= r
s−a

.

Formulas similar to those in (6) and (7) can also be written for the angles β and γ. To see (1),
drop an altitude from C to c forming a right triangle. The area is one-half the product of the
base c and the altitude. But the altitude equals a sin β. To see (2), again drop an altitude, h,
forming two right triangles with bases x and c−x. Use the Pythagorean Theorem twice and
eliminate the altitude to solve for x = a2−b2+c2

2c
(Note x = a cos β). Now, substitute x back

into h2 = a2−x2. Use A2−B2 = (A−B)(A+B) and A2 +2AB +B2 = (A+B)2 to expand.
Then multiply by 4c2 giving (b+c−a)(a+b−c)(a+c−b)(a+b+c). For more details see pages
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337-338 of Geometry, Second Edition by Harold Jacobs. For a proof using trigonometry see
Cyclic quadrangles; Brahmagupta’s formula on pages 56-59 of Geometry Revisited by Coxeter
and Greitzer. Heron’s formula is then seen to be a corollary to Brahmagupta’s formula. To
see (3), divide the triangle into three triangles with segments from the incenter to the vertices.
To see (4), circumscribe the triangle and draw a diameter from one of the vertices. Draw a
chord from the other endpoint of the diameter to a second vertex of the triangle. Note that
the angle at the third vertex is equal to the angle formed by the diameter and the chord,
or supplementary to it, if the third angle is not acute. Therefore, the two angles have equal
sines. To see (5), use (1) and (4). To see (6), solve the Law of Cosines for cos α and add 1
or subtract from 1. To see (7), use the half-angle formulas sin2 α

2
= 1−cos α

2
, cos2 α

2
= 1+cos α

2
,

and (6). For the final part of (7) use the first two parts of (7) and formulas (2) and (3).

2 Convex Functions and Jensen’s Inequality

A real-valued function f is convex on an interval I if and only if

f(ta + (1− t)b) ≤ tf(a) + (1− t)f(b) (1)

for all a, b ∈ I and 0 ≤ t ≤ 1. This just says that a function is convex if the graph of the
function lies below its secants. See pages 2 through 5 of Bjorn Poonen’s paper, distributed
at his talk on inequalities, for a discussion of convex functions and inequalities for convex
functions. A number of common functions that are convex are also listed. Among those
listed are − ln x on (0,∞), − sin x on [0, π], − cos x on [−π/2, π/2] and tan x on [0, π/2]. To
avoid the negative signs a complementary concept is defined. A real-valued function f is
concave on an interval I if and only if

f(ta + (1− t)b) ≥ tf(a) + (1− t)f(b) (2)

for all a, b ∈ I and 0 ≤ t ≤ 1. Therefore f is convex iff −f is concave. If you are familiar
with derivatives then the following theorem about twice differentiable functions provides a
way of telling if such a function is convex.

Theorem 3 If f ′′(x) ≥ 0 for all x ∈ I , then f is convex on I.

Inequality (1) can be generalized to a convex function f with three variables x1, x2, x3 with
weights t1, t2, t3, respectively, such that t1 + t2 + t3 = 1. Note that t2 + t3 = 1− t1. In this
manner the three variable case can be transformed into the two variable case as follows.

f(t1x1 + t2x2 + t3x3) = f
(
t1x1 + (1− t1)

t2x2 + t3x3

t2 + t3

)
≤ t1f(x1) + (1− t1)f

(
t2x2 + t3x3

t2 + t3

)
= t1f(x1) + (1− t1)f

(
t2

t2 + t3
x2 +

t3
t2 + t3

x3

)
≤ t1f(x1) + (t2 + t3)

(
t2

t2 + t3
f(x2) +

t3
t2 + t3

f(x3)
)

= t1f(x1) + t2f(x2) + t3f(x3).

This process can be continued to produce an n variable version which is due to J.L.W.V.
Jensen. It can be easily proved by mathematical induction using the above technique. Write
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your own proof and compare with the one given here. It will give you some good practice
manipulating sigma notation.

Theorem 4 (Jensen’s Inequality 1906) Let f be a convex function on the interval I. If
x1, x2, . . . , an ∈ I and t1, t2, . . . , tn are nonnegative real numbers such that t1+t2+. . .+tn = 1,
then

f(
n∑

i=1

tixi) ≤
n∑

i=1

tif(xi).

Proof by induction: The case for n = 2 is true by the definition of convex. Assume the
relation holds for n, then we have

f

(
n+1∑
i=1

tixi

)
= f

(
n∑

i=1

tixi + tn+1xn+1

)
= f

(
tn+1xn+1 + (1− tn+1)

1

1− tn+1

n∑
i=1

tixi

)

≤ tn+1f(xn+1) + (1− tn+1)f

(
1

1− tn+1

n∑
i=1

tixi

)

= tn+1f(xn+1) + (1− tn+1)f

(
n∑

i=1

ti
1− tn+1

xi

)

≤ tn+1f(xn+1) + (1− tn+1)
n∑

i=1

ti
1− tn+1

f(xi)

=
n∑

i=1

tif(xi) + tn+1f(xn+1)

=
n+1∑
i=1

tif(xi).

Thus showing that the assumption implies that the relation holds for n + 1 and by the
principle of Mathematical Induction holds for all natural numbers.

An easy consequence of Jensen’s theorem is the following proof of the arithmetic mean-
geometric mean inequality. (Problem 13 from Bjorn’s paper)

Theorem 5 (AM-GM Inequality) If x1, x2, . . . , xn ≥ 0 then

x1 + x2 + · · ·+ xn

n
≥ n
√

x1x2 · · ·xn.

Proof. Since − ln x is convex then ln x is concave. By Jensen’s theorem we have

ln
(

x1 + x2 + · · ·+ xn

n

)
≥ ln x1 + ln x2 + · · ·+ ln xn

n

=
1

n
ln(x1x2 · · ·xn)

= ln[(x1x2 · · ·xn)
1
n ]

Since ln x is monotonic increasing (f ′(x) = 1
x

> 0) for x > 0 we have
x1+x2+···+xn

n
≥ n
√

x1x2 · · ·xn.

The proof of Jensen’s Inequality does not address the specification of the cases of equality.
It can be shown that strict inequality exists unless all of the xi are equal or f is linear on
an interval containing all of the xi.
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3 Seven Wonders of the World

The title of this section comes from an article by Richard Hoshino entitled The Other Side
of Inequalities, Part Four in Mathematical Mayhem, Volume 7, issue 4, March-April 1995.
Mathematical Mayhem merged with Crux Mathematicorum after Volume 8 and the two are
published together by the Canadian Mathematical Society eight times a year. The cost
for nonmembers is $60 a year, but a student rate of only $20 available. The article was a
very successful attempt to show how some inequalities could be elegantly solved with some
trigonometry. The major theme was to employ Jensen’s Inequality for concave functions of
three variables. Namely,

f(x1) + f(x2) + f(x3)

3
≤ f

(
x1 + x2 + x3

3

)
. (3)

Note that f(x) = sin x is concave on [0, π], f(x) = csc x is convex on (0, π), f(x) = cos x is
concave on [0, π/2] and convex on [π/2, π] and tan x is convex on (0, π/2). As before α, β,
and γ are the angles of triangle ABC. The following list of inequalities comprise the Seven
Wonders of the World.

W1 sin α + sin β + sin γ ≤ 3
√

3
2

.

W2 csc α + csc β + csc γ ≥ 2
√

3

W3 1 < cos α + cos β + cos γ ≤ 3
2
.

W4 cot α cot β cot γ ≤
√

3
9

.

W5 cot α + cot β + cot γ ≥
√

3.

W6 sin2 α + sin2 β + sin2 γ ≤ 9
4
.

W7 cot2 α + cot2 β + cot2 γ ≥ 1.

The following are some proofs that exhibit the usefulness of Jensen’s Inequality and some
other standard techniques with trigonometric functions.

W1 Since sin x is concave on (0, π) by Jensen’s Inequality we have sin α+sin β+sin γ
3

≤ sin(α+β+γ
3

).

But α + β + γ = π, so α+β+γ
3

= π
3
. Multiplying both sides of the inequality by 3 and

using sin π
3

=
√

3
2

gives the result.

W2 Since csc x is convex on (0, π) by Jensen’s Inequality we have
csc α + csc β + csc γ ≥ 3 csc[(α + β + γ)/3] = 3 csc π

3
= 2

√
3.

W3 If α, β, γ < π
2

then by Jensen’s Inequality we have
cos α + cos β + cos γ ≤ 3 cos[(α + cos β + cos γ)/3)] = 3

2
. Otherwise the situation

becomes complicated. See Richard Hoshino’s article for details. For an alternate proof
see Some Harder Problems, number 3, at the end.

W4 If one of the angles, α, is not acute then the value for cot α < 0 and the values for
the other two angles will by positive so that the inequality is clearly true. If the three
angles are acute, since tan x is convex and γ = π − (α + β), we have by Jensen’s
Inequality tan α + tan β + tan γ ≥ 3 tan[(α + β + γ)/3] = 3

√
3. But tan α + tan β +

tan γ = tan α tan β tan γ (Prove this). Therefore tan α tan β tan γ ≥ 3
√

3. Taking the

reciprocals we have cot α cot β cot γ ≤ 1
3
√

3
=

√
3

9
.
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W5 First note that cot α + cot β = cos α
sin α

+ cos β
sin β

= sin β cos α+cos β sin α
sin α sin β

= sin(α+β)
sin α sin β

.
But

cos(α− β) = cos α cos β + sin α sin β ≤ 1

− cos(α + β) = − cos α cos β + sin α sin β = cos γ

Adding we get

2 sin α sin β ≤ 1 + cos γ

2 sin α sin β sin(α + β) ≤ (1 + cos γ) sin(α + β)

2 sin α sin β sin(γ) ≤ (1 + cos γ) sin(α + β)

2 sin α sin β sin(γ)

sin α sin β(1 + cos γ)
≤ (1 + cos γ) sin(α + β)

sin α sin β(1 + cos γ)

2 sin γ

1 + cos γ
≤ sin(α + β)

sin α sin β

Therefore

cot α + cot β + cot γ =
sin(α + β)

sin α sin β
+ cot γ

≥ 2 sin γ

1 + cos γ
+

cos γ

sin γ

=
1

2

(
4 sin2 γ + 2 cos2 γ + 2 cos γ

(1 + cos γ) sin γ

)

=
1

2

(
3 sin2 γ + cos2 γ + 2 cos γ + 1

(1 + cos γ) sin γ

)

=
1

2

(
3 sin2 γ + (cos γ + 1)2

(cos γ + 1) sin γ

)

=
1

2

(
3 sin γ

(cos γ + 1)
+

cos γ + 1

sin γ

)

≥ 2

2

(√
3 sin γ

(cos γ + 1)

cos γ + 1

sin γ

)
By the AM GM Inequality

=
√

3

So cot α + cot β + cot γ ≥
√

3

W6 Since γ = π − (α + β) and the sine of an angle equals the sine of its supplement we
have sin2 α + sin2 β + sin2 γ = sin2 α + sin2 β + sin2(α + β)

= sin2 α + sin2 β + sin2 α cos2 β + 2 sin α sin β cos α cos β + cos2 α sin2 β

= sin2 α + sin2 β + (1− cos2 α) cos2 β + 2 sin α sin β cos α cos β + cos2 α(1− cos2 β)

= sin2 α + sin2 β + cos2 β − cos2 α cos2 β + 2 sin α sin β cos α cos β + cos2 α− cos2 α cos2 β

= 2− 2 cos2 α cos2 β + 2 sin α sin β cos α cos β

= 2− 2 cos α cos β(cos α cos β − sin α sin β)

= 2− 2 cos α cos β cos(α + β)

= 2 + 2 cos α cos β cos(γ)
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But from W3 we have cos α+cos β+cos γ
3

≤ 1
2

so that
(

cos α+cos β+cos γ
3

)3
≤ 1

8
.

By the AM-GM we have cos α cos β cos γ ≤
(

cos α+cos β+cos γ
3

)3
≤ 1

8
.

Therefore sin2 α + sin2 β + sin2 γ = 2 + 2 cos α cos β cos γ ≤ 2 + 2(1
8
) = 9

4
.

W7 By the AM-GM we have cot2 α+cot2 β ≥ 2 cot α cot β and likewise for the other pairs.
Adding the three inequalities together and dividing by 2 we have

cot2 α + cot2 β + cot2 γ ≥ cot α cot β + cot β cot γ + cot γ cot α

= cot α cot β − cot β cot(α + β)− cot(α + β) cot α

= cot α cot β − cot(α + β)(cot β + cot α)

= cot α cot β − cot α cos β − 1

cot α + cot β
(cot β + cot α)

= cot α cot β − cot α cos β + 1

= 1.

Therefore cot2 α + cot2 β + cot2 γ ≥ 1.

4 Problems

Now for some exercises upon which to practice these ideas. The first three are easy if you
apply the correct trigonometric identity. The next eleven problems apply the Seven Wonders
of the World, Jensen’s Inequality, AM-GM Inequality and/or previous exercises.

1. If a2 +b2 = 1 and m2 +n2 = 1 for real numbers a, b, m and n, prove that |am+bn| ≤ 1.

2. Solve 3 sin2 α− 4 sin4 α− 2 = 0.

3. (1984 ARML) In triangle ABC, a ≥ b ≥ c. If a3+b3+c3

sin3 α+sin3 β+sin3 γ
= 7, compute the

maximum possible value for a.

4. sin α sin β sin γ ≤ 3
√

3
8

.

5. csc α csc β csc γ ≥ 8
√

3
9

.

6. 3
4
≤ cos2 α + cos2 β + cos2 γ < 3.

7. sec2 α + sec2 β + sec2 γ > 3.

8. csc2 α + csc2 β + csc2 γ ≥ 4.

9. 1 < sin α
2

+ sin β
2

+ sin γ
2
≤ 3

2
.

10. 2 < cos α
2

+ cos β
2

+ cos γ
2
≤ 3

√
3

2
.

11. tan α
2

+ tan β
2

+ tan γ
2
≥
√

3.

12. cot α
2

+ cot β
2

+ cot γ
2
≥ 3

√
3.

13. csc α
2

+ csc β
2

+ csc γ
2
≥ 6.

14. sec α
2

+ sec β
2

+ sec γ
2
≥ 2

√
3.
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5 Hints

1. Use the fundamental trigonometric identity relating sin θ and cos θ.

2. Recall or derive the formula for sin 3θ in terms of sin θ.

3. Use Law of Sines.

4. Use W1 and AM-GM inequality.

5. Use the previous exercise.

6. Use W6.

7. Consider the range of | sec θ|

8. Use W7.

9. Note that (π − α)/2 + (π − β)/2 + (π − γ)/2 = π. Use W3.

10. Use W1 for the second inequality. I found the first inequality difficult to prove.

11. Use W5 and the fact that tan θ and cot θ are complementary functions,
i.e. cot(π

2
− θ) = tan θ.

12. Use W4 and the same ideas as the previous problem.

13. Use Jensen’s Inequality.

14. Use Jensen’s Inequality.

6 Some Harder Problems

1. Use the first part of formula 7 and its related forms along with Euler’s Inequality to
show 0 < sin α

2
sin β

2
sin γ

2
= (s−a)(s−b)(s−c)

abc
= r

4R
≤ 1

8
with equality if and only if the

triangle is equilateral.

2. Show that cos α + cos β + cos γ = 1 + 4 sin α
2

sin β
2

sin γ
2
.

3. Use the two previous problems to construct a proof of W3.

4. (1997 Asian Pacific Mathematical Olympiad) Let triangle ABC be inscribed in
a circle and let

la =
ma

Ma

, lb =
mb

Mb

, lc =
mc

Mc

,

where ma, mb, mc are the lengths of the angle bisectors (internal to the triangle) and
Ma, Mb, Mc are the lengths of the angle bisectors extended until they meet the circle.
Prove that

la
sin2 α

+
lb

sin2 β
+

lc
sin2 γ

≥ 3,

and that equality holds if and only if ABC is an equilateral triangle.
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5. (1995 Canadian Mathematical Olympiad) Let a, b, and c be positive real num-
bers. Prove that

aabbcc ≥ (abc)
a+b+c

3 .

6. See the 33 problems from Bjorn Poonen’s paper on inequalities.
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If you have comments, questions or find glaring errors, please contact me by e-mail at the
following address: trike@ousd.k12.ca.us
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